login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036370 Triangle of coefficients of generating function of ternary rooted trees of height at most n. 19
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 4, 7, 12, 20, 31, 47, 70, 99, 137, 184, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Alois P. Heinz, Rows n = 0..8, flattened

Index entries for sequences related to rooted trees

FORMULA

T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1.

EXAMPLE

1;

1, 1;

1, 1, 1, 1, 1;

1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1;

...

MAPLE

T:= proc(n) option remember; local f, g;

      if n=0 then 1

    else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));

         g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));

         seq(coeff(g, z, i), i=0..degree(g, z))

      fi

    end:

seq(T(n), n=0..5); # Alois P. Heinz, Sep 26 2011

MATHEMATICA

T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* Jean-Fran├žois Alcover, Mar 10 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A036437.

Sequence in context: A319715 A088807 A036371 * A005208 A110007 A327715

Adjacent sequences:  A036367 A036368 A036369 * A036371 A036372 A036373

KEYWORD

nonn,easy,tabf

AUTHOR

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 03:46 EDT 2021. Contains 345098 sequences. (Running on oeis4.)