login
A036437
Triangle of coefficients of generating function of ternary rooted trees of height exactly n.
14
1, 1, 1, 1, 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 3, 8, 15, 27, 43, 67, 97, 136, 183, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1, 1, 4, 13, 32, 74, 155, 316, 612, 1160, 2126, 3829, 6737
OFFSET
1,6
LINKS
Alois P. Heinz, Rows n = 1..8, flattened
A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (1988), 304-313.
FORMULA
T_{n}(z) - T_{n-1}(z) (see A036370).
EXAMPLE
1;
1, 1, 1;
1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;
MAPLE
df:= (t, l)-> zip((x, y)->x-y, t, l, 0):
T:= proc(n) option remember; local f, g;
if n=0 then 1
else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
seq(coeff(g, z, i), i=0..degree(g, z))
fi
end:
seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # Alois P. Heinz, Sep 26 2011
MATHEMATICA
df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A269300 A182215 A036443 * A053306 A108422 A276523
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)
STATUS
approved