login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of generating function of ternary rooted trees of height exactly n.
14

%I #28 Mar 22 2024 08:56:20

%S 1,1,1,1,1,2,4,4,5,4,4,3,2,1,1,1,3,8,15,27,43,67,97,136,183,239,300,

%T 369,432,498,551,594,614,624,601,570,514,453,378,312,238,181,128,89,

%U 56,37,20,12,6,3,1,1,1,4,13,32,74,155,316,612,1160,2126,3829,6737

%N Triangle of coefficients of generating function of ternary rooted trees of height exactly n.

%H Alois P. Heinz, <a href="/A036437/b036437.txt">Rows n = 1..8, flattened</a>

%H A. T. Balaban, J. W. Kennedy and L. V. Quintas, <a href="https://doi.org/10.1021/ed065p304">The number of alkanes having n carbons and a longest chain of length d</a>, J. Chem. Education, 65 (1988), 304-313.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F T_{n}(z) - T_{n-1}(z) (see A036370).

%e 1;

%e 1, 1, 1;

%e 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;

%p df:= (t, l)-> zip((x,y)->x-y, t, l, 0):

%p T:= proc(n) option remember; local f, g;

%p if n=0 then 1

%p else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));

%p g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));

%p seq(coeff(g, z, i), i=0..degree(g, z))

%p fi

%p end:

%p seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # _Alois P. Heinz_, Sep 26 2011

%t df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Jan 30 2014, after _Alois P. Heinz_ *)

%K nonn,easy,tabf

%O 1,6

%A _N. J. A. Sloane_, Eric Rains (rains(AT)caltech.edu)