The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121483 Number of peaks at odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing. 2
 1, 2, 6, 19, 56, 167, 487, 1411, 4047, 11527, 32617, 91790, 257065, 716896, 1991792, 5515535, 15227846, 41930133, 115176023, 315676425, 863475561, 2357539227, 6425887551, 17487572124, 47522431681, 128969086382, 349567320762 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = Sum(k*A121481(n,k),k=0..n). LINKS Table of n, a(n) for n=1..27. E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217. Index entries for linear recurrences with constant coefficients, signature (6,-9,-5,15,-1,-4,1). FORMULA G.f.: z(1-z)(1-3z+6z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)]. Recurrence: (n^2 - 5*n - 20)*a(n) = (3*n^2 - 12*n - 79)*a(n-1) + (n^2 - 7*n - 16)*a(n-2) - (5*n^2 - 19*n - 138)*a(n-3) - (n^2 - 6*n - 31)*a(n-4) + (n^2 - 3*n - 24)*a(n-5). - Vaclav Kotesovec, Mar 20 2014 a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5*2^(n+2)). - Vaclav Kotesovec, Mar 20 2014 EXAMPLE a(2)=2 because in UDUD and UUDD we have altogether 2 peaks at odd level; here U=(1,1) and D=(1,-1). MAPLE G:=z*(1-z)*(1-3*z+6*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): Gser:=series(G, z=0, 33): seq(coeff(Gser, z, n), n=1..30); MATHEMATICA Rest[CoefficientList[Series[x*(1-x)*(1-3*x+6*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *) CROSSREFS Cf. A121481, A121486, A038731. Sequence in context: A183305 A192715 A226433 * A077834 A325918 A307564 Adjacent sequences: A121480 A121481 A121482 * A121484 A121485 A121486 KEYWORD nonn AUTHOR Emeric Deutsch, Aug 02 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)