OFFSET
0,2
LINKS
FORMULA
From Paul Barry, May 19 2004: (Start)
G.f.: 1/((1-3*x)(1 + x + x^2)).
a(n) = sum_{k=0..n} (3^k*2*sqrt(3)*cos(2*Pi*(n-k)/3 + Pi/6)/3).
a(n) = 3^(n+2)/13 + 2*sqrt(3)*cos(2*Pi*n/3 + Pi/6)/39 + 2*sqrt(3)*sin(2*Pi*n/3 + Pi/3)/13.
(End)
a(n) = A152733(n+3)/3. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
a(0)=1, a(1)=2, a(2)=6, a(n) = 2*a(n-1) + 2*a(n-2) + 3*a(n-3). - Harvey P. Dale, Jan 31 2012
a(n) = 1/52*(4*3^(n + 2) + (-1)^n*(2*(-1)^floor(n/3) + 9*(-1)^floor((1 + n)/3) + 6*(-1)^floor((n + 2)/3) + (-1)^floor((n + 4)/3))). - John M. Campbell, Dec 23 2016
MAPLE
MATHEMATICA
k0=k1=0; lst={}; Do[kt=k1; k1=3^n-k1-k0; k0=kt; AppendTo[lst, k1/3], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[1/(1-2x-2x^2-3x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, 3}, {1, 2, 6}, 30] (* Harvey P. Dale, Jan 31 2012 *)
PROG
(PARI) Vec(1/(1-2*x-2*x^2-3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved