login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077834
Expansion of 1/(1 - 2*x - 2*x^2 - 3*x^3).
3
1, 2, 6, 19, 56, 168, 505, 1514, 4542, 13627, 40880, 122640, 367921, 1103762, 3311286, 9933859, 29801576, 89404728, 268214185, 804642554, 2413927662, 7241782987, 21725348960, 65176046880, 195528140641, 586584421922, 1759753265766, 5279259797299, 15837779391896
OFFSET
0,2
FORMULA
From Paul Barry, May 19 2004: (Start)
Convolution of A000244 and A049347.
G.f.: 1/((1-3*x)(1 + x + x^2)).
a(n) = sum_{k=0..n} (3^k*2*sqrt(3)*cos(2*Pi*(n-k)/3 + Pi/6)/3).
a(n) = 3^(n+2)/13 + 2*sqrt(3)*cos(2*Pi*n/3 + Pi/6)/39 + 2*sqrt(3)*sin(2*Pi*n/3 + Pi/3)/13.
(End)
a(n) = A152733(n+3)/3. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
a(0)=1, a(1)=2, a(2)=6, a(n) = 2*a(n-1) + 2*a(n-2) + 3*a(n-3). - Harvey P. Dale, Jan 31 2012
a(n) = 1/52*(4*3^(n + 2) + (-1)^n*(2*(-1)^floor(n/3) + 9*(-1)^floor((1 + n)/3) + 6*(-1)^floor((n + 2)/3) + (-1)^floor((n + 4)/3))). - John M. Campbell, Dec 23 2016
MAPLE
A049347 := proc(n) op(1+(n mod 3), [1, -1, 0]) ; end proc:
A077834 := proc(n) (3^(n+2)+3*A049347(n-1)+4*A049347(n))/13 ; end proc:
seq(A077834(n), n=0..20) ; # R. J. Mathar, Mar 22 2011
MATHEMATICA
k0=k1=0; lst={}; Do[kt=k1; k1=3^n-k1-k0; k0=kt; AppendTo[lst, k1/3], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[1/(1-2x-2x^2-3x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, 3}, {1, 2, 6}, 30] (* Harvey P. Dale, Jan 31 2012 *)
PROG
(PARI) Vec(1/(1-2*x-2*x^2-3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A192715 A226433 A121483 * A325918 A307564 A308240
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved