OFFSET
1,4
COMMENTS
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.: G(t,z) = z(1-z^2)(1-2z^2-tz^3)/(1-4z^2-z-tz+2tz^4+4z^4-z^6 +2z^3+tz^3+t^2*z^3).
EXAMPLE
T(4,2)=2 because we have UDUU|DU|DD and UU|DDUU|DD, where U=(1,1) and D=(1,-1) (the peaks at even level are shown by a |).
Triangle starts:
1;
1,1;
2,2,1;
4,6,2,1;
8,13,10,2,1;
16,34,23,13,2,1;
MAPLE
G:=z*(1-z^2)*(1-2*z^2-t*z^3)/(1-4*z^2-z-t*z+2*t*z^4+4*z^4-z^6+2*z^3+t*z^3+z^3*t^2): Gser:=simplify(series(G, z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 02 2006
STATUS
approved