OFFSET
1,1
COMMENTS
The squarefree semiprimes in A332822. - Peter Munn, Dec 25 2020
FORMULA
EXAMPLE
The sequence of terms together with their prime indices begins:
10: {1,3} 187: {5,7} 358: {1,41} 527: {7,11}
22: {1,5} 194: {1,25} 365: {3,21} 538: {1,57}
34: {1,7} 205: {3,13} 382: {1,43} 545: {3,29}
46: {1,9} 206: {1,27} 391: {7,9} 554: {1,59}
55: {3,5} 218: {1,29} 394: {1,45} 566: {1,61}
62: {1,11} 235: {3,15} 415: {3,23} 614: {1,63}
82: {1,13} 253: {5,9} 422: {1,47} 626: {1,65}
85: {3,7} 254: {1,31} 451: {5,13} 635: {3,31}
94: {1,15} 274: {1,33} 454: {1,49} 649: {5,17}
115: {3,9} 295: {3,17} 466: {1,51} 662: {1,67}
118: {1,17} 298: {1,35} 482: {1,53} 685: {3,33}
134: {1,19} 314: {1,37} 485: {3,25} 694: {1,69}
146: {1,21} 334: {1,39} 514: {1,55} 697: {7,13}
155: {3,11} 335: {3,19} 515: {3,27} 706: {1,71}
166: {1,23} 341: {5,11} 517: {5,15} 713: {9,11}
MATHEMATICA
Select[Range[100], SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
CROSSREFS
A338910 is the not necessarily squarefree version.
A339004 is the even instead of odd version.
A005117 lists squarefree numbers.
A300912 lists products of two primes of relatively prime index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A339002 lists products of two distinct primes of non-relatively prime index.
A339005 lists products of two distinct primes of divisible index.
Cf. A001221, A001222, A056239, A112798, A166237, A195017, A318990, A320911, A338901, A338903, A338911.
Subsequence of A332822.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2020
STATUS
approved