login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339000
Triangle read by rows: T(n, k) = C(n, k)*Sum_{j=0..n} C(n, k-j)*C(n+j, j)/C(2*j, j).
1
1, 1, 2, 1, 7, 5, 1, 15, 32, 13, 1, 26, 111, 123, 34, 1, 40, 285, 603, 429, 89, 1, 57, 610, 2094, 2748, 1408, 233, 1, 77, 1155, 5845, 12170, 11196, 4437, 610, 1, 100, 2002, 14014, 42355, 60686, 42255, 13587, 1597, 1, 126, 3246, 30030, 124137, 254756, 271961, 150951, 40736, 4181
OFFSET
0,3
FORMULA
G.f.: A008459(x,y)/(1-x*y*A008459(x,y)^2).
T(n,n) = Fibonacci(2*n+1).
EXAMPLE
Triangle begins as:
1;
1, 2;
1, 7, 5;
1, 15, 32, 13;
1, 26, 111, 123, 34;
1, 40, 285, 603, 429, 89;
1, 57, 610, 2094, 2748, 1408, 233;
MATHEMATICA
T[n_, k_]:= With[{B=Binomial}, B[n, k]*Sum[B[n, k-j]*B[n+j, j]/B[2*j, j], {j, 0, n}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
PROG
(Maxima)
T(n, m):=(binomial(n, m))*sum(((binomial(n, m-k))*(binomial(n+k, k)) )/(binomial(2*k, k)), k, 0, n);
(Magma)
b:=Binomial;
A339000:= func< n, k | b(n, k)*(&+[b(n, k-j)*b(n+j, j)/b(2*j, j): j in [0..n]]) >;
[A339000(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
(SageMath)
b=binomial
def A339000(n, k): return b(n, k)*sum(b(n, k-j)*b(n+j, j)//b(2*j, j) for j in range(n+1))
flatten([[A339000(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024
CROSSREFS
Cf. A000045 (Fibonacci), A001519, A008459, A046748 (row sums).
Sequence in context: A143877 A319464 A019642 * A248811 A048505 A124821
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Nov 18 2020
STATUS
approved