The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319464 Simple continued fraction expansion of a constant t with partial denominators a(n) such that the continued fraction with fractional partial denominators (2*a(n) + 3)/3 yields the same value t. 2
 2, 1, 7, 5, 1, 1, 2, 2, 2, 2, 9, 1, 1, 1, 1, 3, 2, 2, 9, 11, 4, 51, 4, 1, 4, 2, 1, 2, 3, 6, 3, 2, 2, 5, 3, 1, 1, 1, 17, 1, 44, 2, 2, 15, 2, 2, 2, 30, 1, 1, 16, 1, 1, 2, 6, 1, 1, 1, 1, 3, 2, 740, 1, 2, 6, 24, 1, 1, 6, 1, 18, 1, 2, 13, 1, 19, 1, 9, 3, 1, 1, 4, 1, 6, 1, 1, 2, 7, 2, 6, 6, 1, 4, 1, 4, 3, 6, 4, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 6, 2, 1, 1, 1, 4, 5, 5, 2, 3, 5, 5, 1, 1, 2, 2, 1, 1, 2, 4, 19, 4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 8, 1, 1, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant t is the least positive real number satisfying the definition. The largest real number with the same property equals 3 + 1/t = 3.3474953831... Note that (sqrt(13) + 3)/2 = [3; 3, 3, 3, ...] also satisfies the property. Is this constant transcendental? LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1100 EXAMPLE Constant t = 2.877736075299027930414865011045376567... The constant equals the continued fraction with partial denominators a(n): t = 2 + 1/(1 + 1/(7 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + 1/(9 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(3 + 1/(2 + 1/(2 + 1/(9 + 1/(11 + ... + 1/(a(n) + ...))))))))))))))))))). the constant also equals the continued fraction with fractional partial denominators (2*a(n) + 3)/3: t = 7/3 + 1/(5/3 + 1/(17/3 + 1/(13/3 + 1/(5/3 + 1/(5/3 + 1/(7/3 + 1/(7/3 + 1/(7/3 + 1/(7/3 + 1/(7 + 1/(5/3 + 1/(5/3 + 1/(5/3 + 1/(5/3 + 1/(3 + 1/(7/3 + 1/(7/3 + 1/(7 + 1/(25/3 + ... + 1/( (2*a(n) + 3)/3 + ...)))))))))))))))))). The simple continued fraction expansion begins: t = [2; 1, 7, 5, 1, 1, 2, 2, 2, 2, 9, 1, 1, 1, 1, 3, 2, 2, 9, 11, 4, 51, 4, 1, 4, 2, 1, 2, 3, 6, 3, 2, 2, 5, 3, 1, 1, 1, 17, 1, 44, 2, 2, 15, 2, 2, 2, 30, 1, 1, 16, 1, 1, 2, 6, 1, 1, 1, 1, 3, 2, 740, 1, 2, 6, 24, 1, 1, 6, 1, 18, 1, 2, 13, 1, 19, 1, 9, 3, 1, 1, 4, 1, 6, 1, 1, 2, 7, 2, 6, 6, 1, 4, 1, 4, 3, 6, 4, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 6, 2, 1, 1, 1, 4, 5, 5, 2, 3, 5, 5, 1, 1, 2, 2, 1, 1, 2, 4, 19, 4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 8, 1, 1, 5, 3, 5, 3, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 19, 1, 1, 5, 2, 3, 1, 7, 1, 7, 2, 1, 1, 2, 4, 3, 2, 2, 1, 4, 1, 1, 14, 1, 7, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 8, 3, 2, 1, 5, 1, 3, 2, 1, 2, 116, 5, 3, 2, 1, 1, 1, 1, 1, 1, 3, 7, 1, 56, 1, 1, 1, 16, 6, 3, 1, 7, 3, 11, 2, 4, 1, 4, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 8, 1, 6, 1, 2, 2, 25, 2, 5, 4, 2, 1, 1, 6, 16, 11, 7, 6, 3, 11, 1, 1, 7, 1, 11, 1, 1, 12, 2, 1, 13, 2, 2, 13, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 98, 14, 2, 1, 1, 1, 2, 2, 5, 1, 3, 8, 26, 1, 3, 1, 9, 1, 2, 4, 1, 6, 1, 2, 6, 2, 1, 7, 1, 2, 1, 5, 105, 1, 3, 58, 1, 1, 1, 144, 1, 499, 1, 2, 2, 1, 3, 2, 14, 1, 3, 1, 5, 1, 3, 1, 18, 77, 9, 32, 1, 3, 7, 1, 10, 3, 3, 1, 1, 5, 8, 1, 3, 4, 1, 1, 1, 2, 1, 79, 3, 1, 1, 2, 1, 4, 8, 1, 22, 5, 1, 9, 1, 5, 5, 1, 1, 2, 1, 1, 6, 2, 6, 7, 3, 2, 6, 6, 1, 12, 5, 1, 7, 10, 1, 3, 2, 5, 2, 1, 9, 1, 1, 1, 1, 1, 2, 2, 5, 1, 8, 3, 2, 1, 2, 1, 2, 3, 5, 6, 16, 1, 1, 1, 8, 5, 21, 3, 2, 5, 1, 48, 1, 13, 2, 7, 1, 1, 4, 44, 1, 1, 3, 1, 1, 1, 1, 1, 1, 22, 1, 1, 2, 9, 3, 2, 3, 3, 3, 4, 4, 13, 1, 65, 1, 1, 7, 1, 1, 3, 1, 18, 7, 2, 1, 2, 3, 8, 4, 10, 1, 9, 1, 1, 4, 4, 2, 15, 2, 1, 1, 51, 14, 5, 2, 10, 1, 2, 28, 4, 9, 1, 1, 3, 1, 1, 1, 5, 1, 2, 1, 82, 9, 3, 1, 1, 2, 212, 8, 1, 1, 1, 100, 1, 3, 1, 4, 2, 1, 1, 3, 19, 2, 1, 1, 1, 5, 1, 10, 7, 2, 1, 1, 5, 2, 5, 9, 1, 3, 9, 1, 1, 40, 74, 3, 1, 1, 1, 1, 11, 1, 1, 1, 7, 1, 48, 1, 2, 1, 1, 1, 3, 2, 4, 4, 1, 2, 3, 1, 1, 1, 19, 7, 54, 1, 2, 3, 3, 1, 4, 170, 6, 3, 3, 11, 2, 1, 1, 35, 2, 2, 1, 5, 1, 2, 1, 4, 1, 1, 2, 1, 3, 4, 2, 1, 13, 12, 2, 4, 13, 4, 1, 2, 1, 1, 2, 1, 8, 6, 1, 12, 2, 2, 12, 2, 1, 411, 2, 3, 5, 3, 1, 1, 1, 1, 1, 2, 11, 6, 1, 2, 1, 1, 18, 3, 1, 20, 3, 1, 4, 4, 1, 3, 1, 10, 3, 2, 1, 16, 1, 1, 7, 4, 7, 2, 1, 11, 4, 17, 3, 36, 1, 2, 12, 4, 1, 2, 2, 1, 1, 1, 8, 1, 1, 82, 5, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 26, 1, 1, 8, 1, 19, 1, 4, 1, 2, 64, 1, 60, 1, 43, 1, 1, 8, 3, 1, 1, 41, 2, 4, 1, 30, 1, 8, 1, 4, 1, 5, 11, 1, 1, 1, 5, 1, 6, 3, 1, 1, 62, 2, 4, 1, 1, 2, 2, 17, 1, 5, 1, 2, 1, 3, 8, 8, 1, 6, 30, 1, 2, 5, 1, 3, 1, 8, 1, 9, 1, 9, 1, 1, 1, 2, 1, 3, 1, 160, 4, 4, 9, 1, 273, 1, 1, 4, 4, 1, 1, 5, 3, 7, 9, 1, 1, 6, 2, 1, 5, 19, 9, 1, 5, 5, 1, 2, 1, 123, 1, 32, 2, 2, 2, 4, 6, 26, 3, 2, 269, 1, 9, 11, 1, 1, 5, 1, 1, 1, 3, 5, 8, 4, 1, 7, 1, 1, 2, 1, 1, 1, 80, 1, 5, 2, 6, 2, 2, 2, 1, 16, 1, 11, 1, 3, 7, 2, 1, 1, 1, 3, 5, 1, 24, 1, 1, 6, 1, 1, 2, 2, 2, 1, 1, 2, 2, 4, 14, 2, 2, 2, 5, 1, 6, 2, 1, 1, 1, 30, 8, 2, 2, 4, 2, 2, 3, 2, 6, 1, 1, 1, 7, 1, 1, 2, 1, 1, 7, 2, 6, 4, 1, 1, 4, 1, 4, 2, 1, 4, 1, 11, 2, 1, 9, 2, 1, 1, 1, 1, 4, 4, 1, 1, 12, 12, 2, 7, 1, 3, 5, 3, 14, 4, 3, 1, 1, 1, 2, 2, 2, 4, 10, 3, 14, 13, 2, 1, 2, 3, 1, 1, 1, 1, 7, 2, 2, 2, 1, 1, 88, 10, 2, 1, 5, 11, 3, 31, 3, 1, 1, 1, 1, 1, 1, 1, 18, 3, 1, 2, 5, 1, 1, 1, 3, 2, 1, 1, 1, 5, 11, 1, 15, 2, 1, 1, 3, 6, 1, 1, 4, 1, 1, 29, 2, 2, 2, 3, 3, 1, 1, 33, 10, 1, 1, 1, 2, 2, 1, 16, 2, 4, 34, 3, 2, 2, 3, 2, 1, 1, 81, 4, 2, 3, 23, 2, 22, 3, 1, 2, 129, 1, 1, 2, 3, 4, 1, 1, 2, 1, 42, 1, 1, 3, 8, 1, 4, 1, 25, 1, 1, 6, 1, 6, 2, 4, 7, 1, 3, 6, 1, 25, 1, 15, 1, 1, 1, 2, 19, 1, 13, 2, 3, 23, 1, 1, 5, 1, 1, 11, 14, 1, 1, 5, 1, 1, 1, 10, 2, 6, 2, 14, 1, 11, 24, 5, 2, 2, 3, 1, 9, 4, 1, 2, 1, 1, 7, 3, 1, 4, 2, 1, 1, 18, 3, 1, 1, 1, 5, 1, 5, 4, 7, ...]. CROSSREFS Cf. A319463 (decimal expansion). Sequence in context: A204771 A141512 A143877 * A019642 A339000 A248811 Adjacent sequences:  A319461 A319462 A319463 * A319465 A319466 A319467 KEYWORD nonn,cofr AUTHOR Paul D. Hanna, Sep 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 02:46 EST 2021. Contains 349426 sequences. (Running on oeis4.)