login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319467
G.f. A(x) satisfies: Sum_{n>=0} x^n * ( 1/(1-x)^n - A(x) )^n = 1.
2
1, 1, 1, 2, 5, 17, 69, 310, 1530, 8079, 45325, 268362, 1667358, 10831443, 73328952, 515991884, 3765585347, 28445023673, 222041323198, 1788408340413, 14842961368603, 126784166379119, 1113305431684358, 10039694886817421, 92889877402814064, 880990917219289747, 8557926084570679399, 85078805258416836197, 864992386976470929447, 8987570189084296089971, 95373920468324819686521
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} x^n * (1-x)^n / ( (1-x)^n + x*A(x) )^(n+1).
(2) 1 = Sum_{n>=0} x^n * ( 1 - A(x)*(1-x)^n )^n / (1-x)^(n^2).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 17*x^5 + 69*x^6 + 310*x^7 + 1530*x^8 + 8079*x^9 + 45325*x^10 + 268362*x^11 + 1667358*x^12 + ...
where
1 = 1 + x*(1/(1-x) - A(x)) + x^2*(1/(1-x)^2 - A(x))^2 + x^3*(1/(1-x)^3 - A(x))^3 + x^4*(1/(1-x)^4 - A(x))^4 + x^5*(1/(1-x)^5 - A(x))^5 + ...
Also,
1 = 1/(1 + x*A(x)) + x*(1-x)/((1-x) + x*A(x))^2 + x^2*(1-x)^2/((1-x)^2 + x*A(x))^3 + x^3*(1-x)^3/((1-x)^3 + x*A(x))^4 + x^4*(1-x)^4/((1-x)^4 + x*A(x))^5 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=1, #A, x^m*(1/(1-x)^m - Ser(A))^m), #A) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A325577.
Sequence in context: A372376 A303952 A162037 * A326412 A183239 A263639
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 29 2018
STATUS
approved