The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319466 G.f.: Sum_{n>=0} ( (1+x)^n - 1/(1+x)^n )^n. 3
 1, 2, 15, 201, 3807, 93103, 2788528, 98816388, 4043274742, 187583369889, 9729671519992, 557914167187926, 35044465503390938, 2392988036211331477, 176493963957191423895, 13982630491776175877953, 1184241622895183679920962, 106774511855374079570593467, 10211007157153638802035266227, 1032332791948276849592811619207 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to A319947, the dual to this sequence. G.f. A(x) = (1+x) * B( x/(1+x) ), where B(x) is the g.f. of A319947. a(n) - A319947(n) = 0 (mod 2) for n >= 0. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA G.f.: Sum_{n>=0} (1+x)^(n^2) * Sum_{k=0..n} (-1)^k * binomial(n,k) / (1+x)^(2*n*k). G.f.: Sum_{n>=0} 1/(1+x)^(n^2) * Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (1+x)^(2*n*k). a(n) ~ c * d^n * n! / sqrt(n), where d = 5.4666049332127684665699843922982444983683628264382802770893... and c = 0.3563391278539240852770166562386253680399190992740998... - Vaclav Kotesovec, Oct 10 2020 EXAMPLE G.f.: A(x) = 1 + 2*x + 15*x^2 + 201*x^3 + 3807*x^4 + 93103*x^5 + 2788528*x^6 + 98816388*x^7 + 4043274742*x^8 + 187583369889*x^9 + ... such that A(x) = 1  +  ((1+x) - 1/(1+x))  +  ((1+x)^2 - 1/(1+x)^2)^2  +  ((1+x)^3 - 1/(1+x)^3)^3  +  ((1+x)^4 - 1/(1+x)^4)^4  +  ((1+x)^5 - 1/(1+x)^5)^5  + ... Equivalently, A(x) = 1  + ((1+x) - 1/(1+x))  + ((1+x)^4 - 2 + 1/(1+x)^4)  + ((1+x)^9 - 3*(1+x)^3 + 3/(1+x)^3 - 1/(1+x)^9)  + ((1+x)^16 - 4*(1+x)^8 + 6 - 4/(1+x)^8 + 1/(1+x)^16)  + ((1+x)^25 - 5*(1+x)^15 + 10*(1+x)^5 - 10/(1+x)^5 + 5/(1+x)^15 - 1/(1+x)^25)  + ((1+x)^36 - 6*(1+x)^24 + 15*(1+x)^12 - 20 + 15/(1+x)^12 - 6/(1+x)^24 + 1/(1+x)^36)  + ... PROG (PARI) {a(n) = my(A=1, X=x + x*O(x^n)); A = sum(m=0, n, ((1+x)^m - 1/(1+X)^m)^m ); polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A319947. Sequence in context: A042355 A208467 A221102 * A020557 A323118 A184361 Adjacent sequences:  A319463 A319464 A319465 * A319467 A319468 A319469 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)