login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319947
G.f.: Sum_{n>=0} ( 1/(1-x)^n - (1-x)^n )^n.
4
1, 2, 17, 233, 4457, 109599, 3294200, 117023348, 4796944724, 222859320409, 11572143728964, 664158801170094, 41748985785588788, 2852580634624308469, 210503045435437702457, 16684642612290860954017, 1413651317086090261964496, 127503642994522759923638691, 12197174216389125259958117521, 1233478106868364650369933771887
OFFSET
0,2
COMMENTS
Compare to A319466, the dual to this sequence.
G.f. A(x) = (1-x) * B( x/(1-x) ), where B(x) is the g.f. of A319466.
a(n) - A319466(n) = 0 (mod 2) for n >= 0.
LINKS
FORMULA
G.f.: Sum_{n>=0} 1/(1-x)^(n^2) * Sum_{k=0..n} (-1)^k * binomial(n,k) * (1-x)^(2*n*k).
G.f.: Sum_{n>=0} (1-x)^(n^2) * Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) / (1-x)^(2*n*k).
a(n) ~ c * d^n * n! / sqrt(n), where d = 5.466604933212768466569984392298244498368362826438280277089... and c = 0.42786673435712807571161365324459616568268597937553... - Vaclav Kotesovec, Oct 10 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 17*x^2 + 233*x^3 + 4457*x^4 + 109599*x^5 + 3294200*x^6 + 117023348*x^7 + 4796944724*x^8 + 222859320409*x^9 + ...
such that
A(x) = 1 + (1/(1-x) - (1-x)) + (1/(1-x)^2 - (1-x)^2)^2 + (1/(1-x)^3 - (1-x)^3)^3 + (1/(1-x)^4 - (1-x)^4)^4 + (1/(1-x)^5 - (1-x)^5)^5 + ...
Equivalently,
A(x) = 1 +
(1/(1-x) - (1-x)) +
(1/(1-x)^4 - 2 + (1-x)^4) +
(1/(1-x)^9 - 3/(1-x)^3 + 3*(1-x)^3 - (1-x)^9) +
(1/(1-x)^16 - 4/(1-x)^8 + 6 - 4*(1-x)^8 + (1-x)^16) +
(1/(1-x)^25 - 5/(1-x)^15 + 10/(1-x)^5 - 10*(1-x)^5 + 5*(1-x)^15 - (1-x)^25) +
(1/(1-x)^36 - 6/(1-x)^24 + 15/(1-x)^12 - 20 + 15*(1-x)^12 - 6*(1-x)^24 + (1-x)^36) +
...
PROG
(PARI) {a(n) = my(A=1, X=x + x*O(x^n)); A = sum(m=0, n, (1/(1-X)^m - (1-x)^m)^m ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A319466.
Sequence in context: A307289 A036082 A240999 * A361194 A373555 A342205
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2018
STATUS
approved