login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319946 G.f. A(x) satisfies: [x^n] 1/(1 - (n+1)*x) / A(x)^2 = 0 for n >= 1. 2
1, 1, 3, 17, 149, 1779, 26745, 481947, 10079457, 239266403, 6343381625, 185548532427, 5931292679587, 205618230689389, 7681464906167799, 307596969286936725, 13142997272755615869, 596844383184584449467, 28705887156859657764753, 1457749861777513666057923, 77946590565516834838055775, 4377554664749646483714085785 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

a(n) ~ c * n^n, where c = 0.859140914229... - Vaclav Kotesovec, Oct 06 2020

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 149*x^4 + 1779*x^5 + 26745*x^6 + 481947*x^7 + 10079457*x^8 + 239266403*x^9 + 6343381625*x^10 + ...

ILLUSTRATION OF DEFINITION.

The table of coefficients of x^k in 1/(1 - (n+1)*x) / A(x)^2 begins:

n=1: [1, -1, -4, -24, -224, -2840, -44700, -832636, -17836768, ...];

n=2: [1, 0, -3, -26, -252, -3120, -48100, -884136, -18772404, ...];

n=3: [1, 1, 0, -20, -260, -3396, -52048, -944080, -19836372, ...];

n=4: [1, 2, 5, 0, -200, -3416, -55524, -1010032, -21044260, ...];

n=5: [1, 3, 12, 40, 0, -2616, -54940, -1062636, -22317312, ...];

n=6: [1, 4, 21, 106, 436, 0, -41860, -1039096, -23238708, ...];

n=7: [1, 5, 32, 204, 1228, 5980, 0, -787936, -22519684, ...];

n=8: [1, 6, 45, 340, 2520, 17544, 98492, 0, -17004132, ...];

n=9: [1, 7, 60, 520, 4480, 37704, 297476, 1889348, 0, ...];

n=10:[1, 8, 77, 750, 7300, 70384, 661980, 5831864, 41314508, 0, ...]; ...

in which the coefficient of x^(n-1) in row n forms a diagonal of zeros after an initial '1'.

RELATED SERIES.

A(x)^2 = 1 + 2*x + 7*x^2 + 40*x^3 + 341*x^4 + 3958*x^5 + 58231*x^6 + 1033124*x^7 + 21365965*x^8 + 503022874*x^9 + ... + A319945(n)*x^n + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( 1/Ser(A)/(1-m*x +x^2*O(x^m)))[m] ); Vec(Ser(A)^(1/2))[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A319945.

Sequence in context: A080253 A234289 A009813 * A213507 A305471 A135750

Adjacent sequences:  A319943 A319944 A319945 * A319947 A319948 A319949

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)