login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319946
G.f. A(x) satisfies: [x^n] 1/(1 - (n+1)*x) / A(x)^2 = 0 for n >= 1.
2
1, 1, 3, 17, 149, 1779, 26745, 481947, 10079457, 239266403, 6343381625, 185548532427, 5931292679587, 205618230689389, 7681464906167799, 307596969286936725, 13142997272755615869, 596844383184584449467, 28705887156859657764753, 1457749861777513666057923, 77946590565516834838055775, 4377554664749646483714085785
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * n^n, where c = 0.859140914229... - Vaclav Kotesovec, Oct 06 2020
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 149*x^4 + 1779*x^5 + 26745*x^6 + 481947*x^7 + 10079457*x^8 + 239266403*x^9 + 6343381625*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in 1/(1 - (n+1)*x) / A(x)^2 begins:
n=1: [1, -1, -4, -24, -224, -2840, -44700, -832636, -17836768, ...];
n=2: [1, 0, -3, -26, -252, -3120, -48100, -884136, -18772404, ...];
n=3: [1, 1, 0, -20, -260, -3396, -52048, -944080, -19836372, ...];
n=4: [1, 2, 5, 0, -200, -3416, -55524, -1010032, -21044260, ...];
n=5: [1, 3, 12, 40, 0, -2616, -54940, -1062636, -22317312, ...];
n=6: [1, 4, 21, 106, 436, 0, -41860, -1039096, -23238708, ...];
n=7: [1, 5, 32, 204, 1228, 5980, 0, -787936, -22519684, ...];
n=8: [1, 6, 45, 340, 2520, 17544, 98492, 0, -17004132, ...];
n=9: [1, 7, 60, 520, 4480, 37704, 297476, 1889348, 0, ...];
n=10:[1, 8, 77, 750, 7300, 70384, 661980, 5831864, 41314508, 0, ...]; ...
in which the coefficient of x^(n-1) in row n forms a diagonal of zeros after an initial '1'.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 7*x^2 + 40*x^3 + 341*x^4 + 3958*x^5 + 58231*x^6 + 1033124*x^7 + 21365965*x^8 + 503022874*x^9 + ... + A319945(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( 1/Ser(A)/(1-m*x +x^2*O(x^m)))[m] ); Vec(Ser(A)^(1/2))[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A319945.
Sequence in context: A080253 A234289 A009813 * A213507 A305471 A368597
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 11 2018
STATUS
approved