login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319945
G.f. A(x) satisfies: [x^n] 1/(1 - (n+1)*x) / A(x) = 0 for n >= 1.
3
1, 2, 7, 40, 341, 3958, 58231, 1033124, 21365965, 503022874, 13253293847, 385800906976, 12285311512117, 424560956348894, 15819575740546279, 632092618823958364, 26957367530649232781, 1222184752998639598978, 58698481264946403235495, 2977081912253813732898008, 159007077603468166439812885, 8920982827223292597938207302, 524554918971298203370379111063
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (exp(1) - 1) * n^n. - Vaclav Kotesovec, Oct 06 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 40*x^3 + 341*x^4 + 3958*x^5 + 58231*x^6 + 1033124*x^7 + 21365965*x^8 + 503022874*x^9 + 13253293847*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in 1/(1 - (n+1)*x) / A(x) begins:
n=1: [1, -1, -4, -24, -224, -2840, -44700, -832636, -17836768, ...];
n=2: [1, 0, -3, -26, -252, -3120, -48100, -884136, -18772404, ...];
n=3: [1, 1, 0, -20, -260, -3396, -52048, -944080, -19836372, ...];
n=4: [1, 2, 5, 0, -200, -3416, -55524, -1010032, -21044260, ...];
n=5: [1, 3, 12, 40, 0, -2616, -54940, -1062636, -22317312, ...];
n=6: [1, 4, 21, 106, 436, 0, -41860, -1039096, -23238708, ...];
n=7: [1, 5, 32, 204, 1228, 5980, 0, -787936, -22519684, ...];
n=8: [1, 6, 45, 340, 2520, 17544, 98492, 0, -17004132, ...];
n=9: [1, 7, 60, 520, 4480, 37704, 297476, 1889348, 0, ...];
n=10:[1, 8, 77, 750, 7300, 70384, 661980, 5831864, 41314508, 0, ...]; ...
in which the coefficient of x^(n-1) in row n forms a diagonal of zeros after an initial '1'.
RELATED SERIES.
The square-root of the g.f. is an integer series that begins
A(x)^(1/2) = 1 + x + 3*x^2 + 17*x^3 + 149*x^4 + 1779*x^5 + 26745*x^6 + 481947*x^7 + 10079457*x^8 + 239266403*x^9 + ... + A319946(n)*x^n + ...
The series 1/A(x) begins
1/A(x) = 1 - 2*x - 3*x^2 - 20*x^3 - 200*x^4 - 2616*x^5 - 41860*x^6 - 787936*x^7 - 17004132*x^8 - 413145080*x^9 - 11149376612*x^10 + ...
The integral of 1/A(x) is an integer series that begins
Integral 1/A(x) dx = x - x^2 - x^3 - 5*x^4 - 40*x^5 - 436*x^6 - 5980*x^7 - 98492*x^8 - 1889348*x^9 - 41314508*x^10 - 1013579692*x^11 - 27557806012*x^12 + ...
the coefficients of which form a diagonal in the above table.
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( 1/Ser(A)/(1-m*x +x^2*O(x^m)))[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A319946.
Sequence in context: A361828 A031973 A274279 * A132785 A224677 A064626
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 11 2018
STATUS
approved