login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: [x^n] 1/(1 - (n+1)*x) / A(x) = 0 for n >= 1.
3

%I #10 Oct 06 2020 03:12:23

%S 1,2,7,40,341,3958,58231,1033124,21365965,503022874,13253293847,

%T 385800906976,12285311512117,424560956348894,15819575740546279,

%U 632092618823958364,26957367530649232781,1222184752998639598978,58698481264946403235495,2977081912253813732898008,159007077603468166439812885,8920982827223292597938207302,524554918971298203370379111063

%N G.f. A(x) satisfies: [x^n] 1/(1 - (n+1)*x) / A(x) = 0 for n >= 1.

%H Paul D. Hanna, <a href="/A319945/b319945.txt">Table of n, a(n) for n = 0..300</a>

%F a(n) ~ (exp(1) - 1) * n^n. - _Vaclav Kotesovec_, Oct 06 2020

%e G.f.: A(x) = 1 + 2*x + 7*x^2 + 40*x^3 + 341*x^4 + 3958*x^5 + 58231*x^6 + 1033124*x^7 + 21365965*x^8 + 503022874*x^9 + 13253293847*x^10 + ...

%e ILLUSTRATION OF DEFINITION.

%e The table of coefficients of x^k in 1/(1 - (n+1)*x) / A(x) begins:

%e n=1: [1, -1, -4, -24, -224, -2840, -44700, -832636, -17836768, ...];

%e n=2: [1, 0, -3, -26, -252, -3120, -48100, -884136, -18772404, ...];

%e n=3: [1, 1, 0, -20, -260, -3396, -52048, -944080, -19836372, ...];

%e n=4: [1, 2, 5, 0, -200, -3416, -55524, -1010032, -21044260, ...];

%e n=5: [1, 3, 12, 40, 0, -2616, -54940, -1062636, -22317312, ...];

%e n=6: [1, 4, 21, 106, 436, 0, -41860, -1039096, -23238708, ...];

%e n=7: [1, 5, 32, 204, 1228, 5980, 0, -787936, -22519684, ...];

%e n=8: [1, 6, 45, 340, 2520, 17544, 98492, 0, -17004132, ...];

%e n=9: [1, 7, 60, 520, 4480, 37704, 297476, 1889348, 0, ...];

%e n=10:[1, 8, 77, 750, 7300, 70384, 661980, 5831864, 41314508, 0, ...]; ...

%e in which the coefficient of x^(n-1) in row n forms a diagonal of zeros after an initial '1'.

%e RELATED SERIES.

%e The square-root of the g.f. is an integer series that begins

%e A(x)^(1/2) = 1 + x + 3*x^2 + 17*x^3 + 149*x^4 + 1779*x^5 + 26745*x^6 + 481947*x^7 + 10079457*x^8 + 239266403*x^9 + ... + A319946(n)*x^n + ...

%e The series 1/A(x) begins

%e 1/A(x) = 1 - 2*x - 3*x^2 - 20*x^3 - 200*x^4 - 2616*x^5 - 41860*x^6 - 787936*x^7 - 17004132*x^8 - 413145080*x^9 - 11149376612*x^10 + ...

%e The integral of 1/A(x) is an integer series that begins

%e Integral 1/A(x) dx = x - x^2 - x^3 - 5*x^4 - 40*x^5 - 436*x^6 - 5980*x^7 - 98492*x^8 - 1889348*x^9 - 41314508*x^10 - 1013579692*x^11 - 27557806012*x^12 + ...

%e the coefficients of which form a diagonal in the above table.

%o (PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( 1/Ser(A)/(1-m*x +x^2*O(x^m)))[m] ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A319946.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 11 2018