login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234289
E.g.f. satisfies: A(x) = 1 + A(x)^2 * Integral 1/A(x) dx.
3
1, 1, 3, 17, 147, 1729, 25827, 468593, 10012083, 246287521, 6856204803, 213102768977, 7315460977107, 274894137157249, 11223280473993507, 494715928976218673, 23416019742035332083, 1184519963466363339361, 63774753426394808946243, 3641219528568659379843857
OFFSET
0,3
COMMENTS
Compare to: G(x) = 1 + G(x)^2 * Integral 1/G(x)^2 dx, where G(x) is the e.g.f. of A006351, the number of series-parallel networks with n labeled edges.
LINKS
FORMULA
E.g.f.: 1 / ( d/dx Series_Reversion( Integral C(x) dx ) ), where C(x) = 1 + x*C(x)^2 = (1 - sqrt(1-4*x))/(2*x), is the Catalan function of A000108.
E.g.f.: 1 + Series_Reversion( 2*x/(1+x) - log(1+x) ).
E.g.f.: -2/LambertW(-1,-2*exp(x-2)). - Vaclav Kotesovec, Dec 27 2013
E.g.f.: A(x) = C( Integral 1/A(x) dx ), where C(x) = 1 + x*C(x)^2 = (1 - sqrt(1-4*x))/(2*x), is the Catalan function of A000108. - Paul D. Hanna, May 23 2019
a(n) ~ 2 * n^(n-1) / (exp(n) * (1-log(2))^(n-1/2)). - Vaclav Kotesovec, Dec 27 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 147*x^4/4! + 1729*x^5/5! +...
where A(x)^2 = 1 + 2*x + 8*x^2/2! + 52*x^3/3! + 484*x^4/4! + 5948*x^5/5! +...
Integral 1/A(x) dx = x - x^2/2! - x^3/3! - 5*x^4/4! - 41*x^5/5! - 469*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 2*x^3/3 + 5*x^4/4 + 14*x^5/5 + 42*x^6/6 + 132*x^7/7 +...+ A000108(n-1)*x^n/n +...
where A000108(n) = binomial(2*n,n)/(n+1).
MAPLE
seq(n! * coeff(series(-2/LambertW(-1, -2*exp(x-2)), x, n+1), x, n), n = 0..10) # Vaclav Kotesovec, Dec 27 2013
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[2*x/(1+x) - Log[1+x], {x, 0, 20}], x], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^2*intformal(1/(A+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Explicit formula using Catalan function C(x) = 1 + x*C(x)^2: */
{a(n)=local(C=(1-sqrt(1-4*x+x^2*O(x^n)))/(2*x), A=1); A=1/deriv(serreverse(intformal(C))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Explicit formula: 1 + Series_Reversion(2*x/(1+x) - log(1+x)): */
{a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(2*X/(1+X)-log(1+X)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A138013 A052807 A080253 * A009813 A319946 A213507
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 22 2013
STATUS
approved