login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234287 Number of distinct quadratic forms of discriminant -4n by which some prime can be represented. 2
1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 2, 3, 5, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 5, 5, 2, 4, 4, 5, 5, 4, 3, 5, 5, 3, 4, 5, 4, 5, 5, 4, 4, 5, 4, 7, 4, 2, 6, 5, 4, 5, 5, 4, 6, 6, 3, 6, 6, 4, 5, 6, 3, 6, 6, 5, 6, 4, 4, 7, 5, 3, 6, 7, 4, 6, 5, 5, 7, 7, 5, 5, 4, 5, 6, 7, 3, 6, 6, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This is similar to A232551, except that this includes non-primitive quadratic forms like 2x^2+2xy+4y^2 and 2x^2+4y^2 because the prime 2 can be represented by both of them. But unlike A067752, we do not include quadratic forms like 4x^2+2xy+4y^2 and 4x^2+4xy+4y^2 by which no prime can be represented.

So, when n == 3 (mod 4), this includes the additional non-primitive quadratic form 2x^2+2xy+((n+1)/2)y^2 and when p^2 divides n, where p is prime, this includes the additional non-primitive quadratic form px^2+(n/p)y^2.

If p is a prime and if p^2 does not divide n, then there exist a unique non-primitive quadratic form of discriminant = -4n by which p can be represented if and only if -n is a quadratic residue (mod p) and there exists a multiple of p which can be written in the form x^2+ny^2 in which p appears raised to an odd power, except when p = 2 and n == 3 (mod 8).

LINKS

Table of n, a(n) for n=1..100.

V. Raman, Examples of these distinct quadratic forms for n = 1..100

CROSSREFS

Cf. A000003, A000926, A067752, A232550, A232551.

Sequence in context: A251141 A319696 A320111 * A084294 A067752 A229942

Adjacent sequences:  A234284 A234285 A234286 * A234288 A234289 A234290

KEYWORD

nonn

AUTHOR

V. Raman, Dec 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 04:21 EST 2019. Contains 329051 sequences. (Running on oeis4.)