login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319950 a(n) = Product_{i=1..n} floor(5*i/3). 3
1, 3, 15, 90, 720, 7200, 79200, 1029600, 15444000, 247104000, 4447872000, 88957440000, 1868106240000, 42966443520000, 1074161088000000, 27928188288000000, 781989272064000000, 23459678161920000000, 727250023019520000000, 23999250759644160000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If p > 3 and gcd(p,3)=1 then Product_{i=1..n} floor(i*p/3) ~ (p/3)^n * n! * 2*Pi * 3^(1/p - 1/2) / (c(p) * n^(1/p)), where

c(p) = Gamma(2/3 - 2/(3*p)) * Gamma(1/3 - 1/(3*p)) if mod(p, 3) = 1,

c(p) = Gamma(1/3 - 2/(3*p)) * Gamma(2/3 - 1/(3*p)) if mod(p, 3) = 2.

In general, if q > 1, p > q and gcd(p,q)=1, then Product_{i=1..n} floor(i*p/q) ~ c(p,q) * (p/q)^n * n! / n^((q-1)/(2*p)), where c(p,q) is a constant.

LINKS

Table of n, a(n) for n=1..20.

FORMULA

a(n) ~ (5/3)^n * n! * 2*Pi / (3^(3/10) * Gamma(1/5) * Gamma(3/5) * n^(1/5)).

Recurrence: 27*(15*n - 32)*a(n) = 675*(n-2)*a(n-1) + 15*(75*n^2 - 255*n + 194)*a(n-2) + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a(n-3).

MATHEMATICA

Table[Product[Floor[i*5/3], {i, 1, n}], {n, 1, 20}]

RecurrenceTable[{27*(15*n - 32)*a[n] == 675*(n-2)*a[n-1] + 15*(75*n^2 - 255*n + 194)*a[n-2] + 5*(n-2)*(5*n - 12)*(5*n - 11)*(15*n - 17)*a[n-3], a[1]==1, a[2]==3, a[3]==15}, a, {n, 1, 20}]

PROG

(PARI) a(n) = prod(i=1, n, (5*i)\3); \\ Michel Marcus, Oct 03 2018

CROSSREFS

Cf. A010786, A047220, A180736, A275062, A319948, A319949, A317980.

Sequence in context: A201953 A185369 A024339 * A336743 A034954 A077783

Adjacent sequences:  A319947 A319948 A319949 * A319951 A319952 A319953

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 18:41 EST 2021. Contains 349416 sequences. (Running on oeis4.)