login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275062 Number A(n,k) of permutations p of [n] such that p(i)-i is a multiple of k for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 24, 1, 1, 1, 1, 1, 4, 120, 1, 1, 1, 1, 1, 2, 12, 720, 1, 1, 1, 1, 1, 1, 4, 36, 5040, 1, 1, 1, 1, 1, 1, 2, 8, 144, 40320, 1, 1, 1, 1, 1, 1, 1, 4, 24, 576, 362880, 1, 1, 1, 1, 1, 1, 1, 2, 8, 72, 2880, 3628800, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = Product_{i=0..k-1} floor((n+i)/k)!.

A(k*n,k) = (n!)^k = A225816(k,n).

For k > 0, A(n, k) ~ (2*Pi*n)^((k - 1)/2) * n! / k^(n + k/2). - Vaclav Kotesovec, Oct 02 2018

EXAMPLE

A(5,0) = A(5,5) = 1: 12345.

A(5,1) = 5! = 120: all permutations of {1,2,3,4,5}.

A(5,2) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.

A(5,3) = 4: 12345, 15342, 42315, 45312.

A(5,4) = 2: 12345, 52341.

A(7,4) = 8: 1234567, 1274563, 1634527, 1674523, 5234167, 5274163, 5634127, 5674123.

Square array A(n,k) begins:

  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...

  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...

  1,       2,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...

  1,       6,     2,   1,   1,  1,  1, 1, 1, 1, 1, ...

  1,      24,     4,   2,   1,  1,  1, 1, 1, 1, 1, ...

  1,     120,    12,   4,   2,  1,  1, 1, 1, 1, 1, ...

  1,     720,    36,   8,   4,  2,  1, 1, 1, 1, 1, ...

  1,    5040,   144,  24,   8,  4,  2, 1, 1, 1, 1, ...

  1,   40320,   576,  72,  16,  8,  4, 2, 1, 1, 1, ...

  1,  362880,  2880, 216,  48, 16,  8, 4, 2, 1, 1, ...

  1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1, ...

MAPLE

A:= (n, k)-> mul(floor((n+i)/k)!, i=0..k-1):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

A[n_, k_] := Product[Floor[(n+i)/k]!, {i, 0, k-1}];

Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, May 26 2019, from Maple *)

CROSSREFS

Columns k=0-10 give: A000012, A000142, A010551, A264557, A264635, A264656, A264701, A264791, A275063, A275064, A275065.

A(k*n,n) for k=1..4 give: A000012, A000079, A000400, A009968.

Cf. A225816.

Sequence in context: A146314 A202480 A124341 * A247005 A174215 A305567

Adjacent sequences:  A275059 A275060 A275061 * A275063 A275064 A275065

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 04:45 EDT 2021. Contains 345080 sequences. (Running on oeis4.)