login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275062
Number A(n,k) of permutations p of [n] such that p(i)-i is a multiple of k for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
15
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 24, 1, 1, 1, 1, 1, 4, 120, 1, 1, 1, 1, 1, 2, 12, 720, 1, 1, 1, 1, 1, 1, 4, 36, 5040, 1, 1, 1, 1, 1, 1, 2, 8, 144, 40320, 1, 1, 1, 1, 1, 1, 1, 4, 24, 576, 362880, 1, 1, 1, 1, 1, 1, 1, 2, 8, 72, 2880, 3628800, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) = Product_{i=0..k-1} floor((n+i)/k)!.
A(k*n,k) = (n!)^k = A225816(k,n).
For k > 0, A(n, k) ~ (2*Pi*n)^((k - 1)/2) * n! / k^(n + k/2). - Vaclav Kotesovec, Oct 02 2018
EXAMPLE
A(5,0) = A(5,5) = 1: 12345.
A(5,1) = 5! = 120: all permutations of {1,2,3,4,5}.
A(5,2) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
A(5,3) = 4: 12345, 15342, 42315, 45312.
A(5,4) = 2: 12345, 52341.
A(7,4) = 8: 1234567, 1274563, 1634527, 1674523, 5234167, 5274163, 5634127, 5674123.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 24, 4, 2, 1, 1, 1, 1, 1, 1, 1, ...
1, 120, 12, 4, 2, 1, 1, 1, 1, 1, 1, ...
1, 720, 36, 8, 4, 2, 1, 1, 1, 1, 1, ...
1, 5040, 144, 24, 8, 4, 2, 1, 1, 1, 1, ...
1, 40320, 576, 72, 16, 8, 4, 2, 1, 1, 1, ...
1, 362880, 2880, 216, 48, 16, 8, 4, 2, 1, 1, ...
1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1, ...
MAPLE
A:= (n, k)-> mul(floor((n+i)/k)!, i=0..k-1):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := Product[Floor[(n+i)/k]!, {i, 0, k-1}];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 26 2019, from Maple *)
CROSSREFS
A(k*n,n) for k=1..4 give: A000012, A000079, A000400, A009968.
Cf. A225816.
Sequence in context: A146314 A202480 A124341 * A247005 A174215 A364457
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 15 2016
STATUS
approved