|
|
A275060
|
|
Numbers n such that there exists x in N : (x+1)^3 - x^3 = 61*n^2.
|
|
2
|
|
|
1, 973, 947701, 923059801, 899059298473, 875682833652901, 852914180918627101, 830737536531909143473, 809137507667898587115601, 788099101730996691941451901, 767607715948483110052387035973, 747649127234720818194333031585801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..300
Index entries for linear recurrences with constant coefficients, signature (974,-1).
|
|
FORMULA
|
G.f.: x*(1-x) / (1-974*x+x^2).
a(n) = 974*a(n-1) - a(n-2) for n>2.
a(n) = ((487 + 36*sqrt(183))^(-n)*(2 - 9*sqrt(3/61) + (2+9*sqrt(3/61))* (487 + 36*sqrt(183))^(2*n)))/4.
|
|
EXAMPLE
|
973 is in the sequence because 973^2 = 946729 = ((4387+1)^3-4387^3)/61.
|
|
MATHEMATICA
|
LinearRecurrence[{974, -1}, {1, 973}, 50] (* G. C. Greubel, Jul 15 2016 *)
|
|
PROG
|
(PARI) Vec(x*(1-x)/(1-974*x+x^2) + O(x^20))
|
|
CROSSREFS
|
Cf. A274972.
Sequence in context: A209045 A209017 A232409 * A251837 A251838 A251845
Adjacent sequences: A275057 A275058 A275059 * A275061 A275062 A275063
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Jul 15 2016
|
|
STATUS
|
approved
|
|
|
|