The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275057 Numbers of closed lambda terms of natural size n. 2
 0, 0, 1, 1, 3, 6, 17, 41, 116, 313, 895, 2550, 7450, 21881, 65168, 195370, 591007, 1798718, 5510023, 16966529, 52506837, 163200904, 509323732, 1595311747, 5013746254, 15805787496, 49969942138, 158396065350, 503317495573, 1602973785463, 5116010587910, 16360492172347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Natural size measure lambda terms as follows: all symbols are assigned size 1, namely applications, abstractions, successor symbols in de Bruijn indices and 0 symbol in de Bruijn indices (i.e., a de Bruijn index n is assigned size n+1). Here we count the closed terms of natural size n, where "closed" means that there is no free index (no free bound variable). LINKS Pierre Lescanne, Table of n, a(n) for n = 0..299 Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc, A Natural Counting of Lambda Terms, SOFSEM 2016: 183-194. Maciej Bendkowski, K Grygiel, P Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682 [cs.LO], 2016-2017. FORMULA L(0,m) = 0. L(n+1,m) = (Sum_{k=0..n} L(k,m)*L(n-k,m)) + L(n,m+1) + [m >= n+1], where [p(n,m)] = 1 if p(n,m) is true and [p(n,m)] = 0 if p(n,m) is false then one considers the sequence (L(n,0)). MATHEMATICA L[0, _] = 0; L[n_, m_] := L[n, m] = Sum[L[k, m]*L[n-k-1, m], {k, 0, n-1}] + L[n-1, m+1] + Boole[m >= n]; a[n_] := L[n, 0]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 23 2017 *) CROSSREFS Cf. A105633, A272794. Sequence in context: A319789 A007718 A297972 * A320807 A089264 A121399 Adjacent sequences: A275054 A275055 A275056 * A275058 A275059 A275060 KEYWORD nonn AUTHOR Pierre Lescanne, Jul 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 12:57 EDT 2024. Contains 372859 sequences. (Running on oeis4.)