login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320807
Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic and all parts of the dual are also aperiodic.
1
1, 1, 3, 6, 17, 41, 122, 345, 1077, 3385, 11214
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer matrices up to row and column permutations with sum of entries equal to n and no zero rows or columns, in which each row and each column has relatively prime nonzero entries.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 17 multiset partitions:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{1},{2,3}} {{1,2},{1,2}}
{{1},{2}} {{2},{1,2}} {{1},{2,3,4}}
{{1},{1},{1}} {{1,2},{3,4}}
{{1},{2},{2}} {{1,3},{2,3}}
{{1},{2},{3}} {{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 07 2018
STATUS
approved