login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275054
G.f.: 3F2([1/9, 2/9, 8/9], [2/3,1], 729 x).
11
1, 24, 6732, 2771340, 1342525275, 711891288108, 399866544799722, 233750557331494632, 140707672445849703480, 86621407014527646518400, 54278825541246092520182592, 34504174655166790354911360048, 22195631874904018057471849288020, 14421008706115620277976088538033200
OFFSET
0,2
COMMENTS
"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
LINKS
A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012.
FORMULA
G.f.: hypergeom([1/9, 2/9, 8/9], [2/3,1], 729*x).
From Vaclav Kotesovec, Jul 28 2016: (Start)
Recurrence: n^2*(3*n - 1)*a(n) = 3*(9*n - 8)*(9*n - 7)*(9*n - 1)*a(n-1).
a(n) ~ 2 * sin(Pi/9) * 3^(6*n - 1/2) / (Gamma(1/3) * Gamma(2/9) * n^(13/9)).
(End)
a(n) = 729^n*Gamma(2/3)*Gamma(1/9+n)*Gamma(2/9+n)*Gamma(8/9+n)*Sin(Pi/9)/(Pi*(n!)^2*Gamma(2/9)*Gamma(2/3+n)). - Benedict W. J. Irwin, Aug 05 2016
EXAMPLE
1 + 24*x + 6732*x^2 + 2771340*x^3 + ...
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1/9, 2/9, 8/9}, {2/3, 1}, 729 x], {x, 0, 13}], x] (* Michael De Vlieger, Jul 26 2016 *)
a[n_] := FullSimplify[(729^n Gamma[2/3] Gamma[1/9 + n] Gamma[2/9 + n] Gamma[8/9 + n] Sin[Pi/9])/(Pi (n!)^2 Gamma[2/9] Gamma[2/3 + n])] (* Benedict W. J. Irwin, Aug 05 2016 *)
PROG
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 12; x = 'x + O('x^N);
Vec(hypergeom([1/9, 2/9, 8/9], [2/3, 1], 729*x, N))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 20 2016
STATUS
approved