login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181749
The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
2
1, 24, 6384, 2306904, 964948464, 439331916888, 211383647188320, 105734905550405400, 54434276297806242480, 28652982232251791825880, 15350736081585866511795024, 8343014042738696079671066904, 4588687856038215036178166258304
OFFSET
0,2
LINKS
FORMULA
Recursion: see Maple program. - Alois P. Heinz, Aug 31 2014
a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 03 2014
EXAMPLE
a(1) = 24 because there are 24 rook paths from (0..0) to (1..1).
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1],
((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4
+3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2*
a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6
-21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2
-6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6
+22263043023*n^5-55659442951*n^4+77029268163*n^3
-57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3)
-5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2*
(n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2
-278070*n^3+34983*n^4)*(n-1)^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 31 2014
MATHEMATICA
b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]];
a[n_] := b[Array[n&, 4]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz in A181731 *)
CROSSREFS
Row d=4 of A181731.
Sequence in context: A163576 A145408 A175672 * A266312 A181232 A275054
KEYWORD
nonn
AUTHOR
Manuel Kauers, Nov 16 2010
STATUS
approved