|
|
A088616
|
|
a(n) = number of n X n (0,1) matrices A such that the 2n vectors consisting of the rows and the columns of the matrix A are all distinct.
|
|
13
|
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..5.
|
|
CROSSREFS
|
Cf. A088310.
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
Sequence in context: A266312 A181232 A275054 * A158042 A297049 A147860
Adjacent sequences: A088613 A088614 A088615 * A088617 A088618 A088619
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Yuval Dekel and Vladeta Jovovic, Nov 17 2003
|
|
EXTENSIONS
|
What if you also ask that the two main diagonals are also distinct? - N. J. A. Sloane, Jan 03 2004.
|
|
STATUS
|
approved
|
|
|
|