login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059202
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
17
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
OFFSET
0,6
COMMENTS
A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
Also, T(n,m) is the number of n X m (0,1)-matrices with pairwise distinct nonzero columns and pairwise distinct nonzero rows, up to permutation of columns.
LINKS
Robert Israel, Table of n, a(n) for n = 0..4094 (rows 0 to 11, flattened).
FORMULA
T(n, m) = (1/m!)*Sum_{1..m + 1} stirling1(m + 1, i)*[2^(i - 1) - 1]_n, where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
E.g.f: Sum((1+x)^(2^n-1)*log(1+y)^n/n!, n=0..infinity)/(1+y). - Vladeta Jovovic, May 19 2004
Also T(n, m) = Sum_{i=0..n} Stirling1(n+1, i+1)*binomial(2^i-1, m). - Vladeta Jovovic, Jun 04 2004
T(n,m) = A181230(n,m)/m! - n*T(n-1,m) - T(n,m-1) - n*T(n-1,m-1). - Max Alekseyev, Dec 11 2017
EXAMPLE
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
MAPLE
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d, `, (1/m!)*sum(stirling1(m+1, i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
MATHEMATICA
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
CROSSREFS
Cf. A059201 (row sums), A059203 (column sums), A094000 (main diagonal).
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
Sequence in context: A122848 A272481 A054548 * A244963 A144452 A217334
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 18 2001
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved