The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059088 Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded). 5
 1, 2, 6, 108, 32076, 2147160096, 9223372004645279520, 170141183460469231537996491317719562880, 57896044618658097711785492504343953921871039195927143534211473291570199939840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node. LINKS Table of n, a(n) for n=0..8. Illustration of initial terms of A059087, A059088 FORMULA Row sums of A059087. a(n) = A059085(n)/2. a(n) = Sum_{k=0..n} stirling1(n, k)*2^((2^k)-1). EXAMPLE There are 108 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded): 12 with 2 hyperedges, 32 with 3 hyperedges,35 with 4 hyperedges, 21 with 5 hyperedges, 7 with 6 hyperedges and 1 with 7 hyperedges. MAPLE with(combinat): for n from 0 to 15 do printf(`%d, `, (1/2)*sum(stirling1(n, k)*2^(2^k), k= 0..n)) od: MATHEMATICA Table[Sum[StirlingS1[n, k]*2^((2^k)-1), {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, Oct 06 2017 *) CROSSREFS Cf. A059084-A059087, A059089. Sequence in context: A181036 A222854 A351780 * A216151 A057771 A056164 Adjacent sequences: A059085 A059086 A059087 * A059089 A059090 A059091 KEYWORD easy,nonn AUTHOR Goran Kilibarda, Vladeta Jovovic, Dec 27 2000 EXTENSIONS More terms from James A. Sellers, Jan 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 06:40 EST 2024. Contains 370310 sequences. (Running on oeis4.)