login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216151
a(n+1) = (Product_{k=1..n} a(k)) * Sum_{k=1..n} a(k), a(1)=1, a(2)=2.
2
1, 2, 6, 108, 151632, 29820965660928, 174758887882787264327879044178706432
OFFSET
1,2
COMMENTS
Conjecture: a(n) > A057194(n) for all n > 1.
a(n) is about x^y^n with y = phi^2 = 2.61803398874... and x around 1.101029823705009804368. - Charles R Greathouse IV, Sep 12 2012
LINKS
EXAMPLE
a(4) = 108 = (6+2+1)*(6*2*1).
MAPLE
a:= proc(n) a(n):= `if`(n<3, n,
mul(a(k), k=1..n-1) * add(a(k), k=1..n-1))
end:
seq (a(n), n=1..10); # Alois P. Heinz, Sep 12 2012
MATHEMATICA
t = {1, 2}; Do[AppendTo[t, (Plus @@ t) (Times @@ t)], {5}]; t (* T. D. Noe, Sep 04 2012 *)
PROG
(PARI) v=vector(10, i, i); for(i=3, #v, v[i] = prod(j=1, i-1, v[j])*sum(j=1, i-1, v[j])); v \\ Charles R Greathouse IV, Sep 12 2012
(Haskell)
a216151 n = a216151_list !! (n-1)
a216151_list = 1 : 2 : f 2 3 where
f u v = w : f (u * w) (v + w) where w = u * v
-- Reinhard Zumkeller, Mar 20 2014
CROSSREFS
Cf. A057194.
Sequence in context: A222854 A351780 A059088 * A057771 A056164 A156500
KEYWORD
nonn
AUTHOR
Jon Perry, Sep 02 2012
STATUS
approved