The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056164 Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges. 0
 1, 2, 6, 109, 191177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node. REFERENCES V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. LINKS K. S. Brown, Dedekind's problem Eric Weisstein's World of Mathematics, Antichain covers FORMULA a(n)=Sum_{k=1..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains covers of an unlabeled n-set. EXAMPLE There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}). a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177. CROSSREFS Cf. A056074, A056090, A056093, A000372, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118. Sequence in context: A059088 A216151 A057771 * A156500 A264889 A231537 Adjacent sequences:  A056161 A056162 A056163 * A056165 A056166 A056167 KEYWORD hard,more,nonn AUTHOR Vladeta Jovovic, Goran Kilibarda, Jul 31 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 14:43 EDT 2021. Contains 346346 sequences. (Running on oeis4.)