login
A056052
Number of 7-antichain covers of a labeled n-set.
6
490, 1305330, 1076513148, 474700998300, 143480504528862, 33962870686689270, 6808412143396065136, 1214116433267798496480, 198951942958529631990834, 30633642863234275154265690, 4502737302793395778228384164
OFFSET
5,1
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
K. S. Brown, Dedekind's problem
Eric Weisstein's World of Mathematics, Antichain covers
FORMULA
a(n)=(1/7!)*(127^n - 42*95^n + 210*79^n + 140*71^n + 210*67^n - 84*65^n + 14*64^n - 819*63^n - 2520*59^n + 2730*55^n + 840*53^n + 840*51^n - 420*50^n + 2940*49^n + 630*47^n - 5040*45^n + 840*44^n - 1260*43^n + 1680*42^n - 9660*41^n + 1260*40^n + 3360*39^n - 7560*38^n + 11130*37^n + 5880*36^n + 9240*35^n + 2982*34^n - 6300*33^n - 8652*32^n - 9905*31^n - 8400*30^n - 8540*29^n + 13860*28^n + 14490*27^n - 5040*26^n + 10500*25^n + 10080*24^n - 8120*23^n - 15050*22^n - 5040*21^n - 11340*20^n + 20580*19^n + 15750*18^n - 1540*17^n - 5810*16^n - 16485*15^n - 21420*14^n + 26250*13^n + 21000*12^n - 29820*11^n + 3500*10^n + 17640*9^n + 2940*8^n - 16016*7^n + 4410*6^n - 9744*5^n + 9744*4^n + 1764*3^n - 3528*2^n + 720).
CROSSREFS
Cf. A051115.
Sequence in context: A287329 A303556 A056936 * A051115 A273809 A060975
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 25 2000
STATUS
approved