OFFSET
4,2
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 4..200
K. S. Brown, Dedekind's problem
Eric Weisstein's World of Mathematics, Antichain covers
FORMULA
a(n)=(1/6!)*(63^n - 30*47^n + 120*39^n + 60*35^n + 60*33^n - 12*32^n - 345*31^n - 720*29^n + 810*27^n + 120*26^n + 480*25^n + 360*24^n - 480*23^n - 720*22^n - 240*21^n - 540*20^n + 1380*19^n + 750*18^n + 60*17^n - 210*16^n - 1535*15^n - 1820*14^n + 2250*13^n + 1800*12^n - 2820*11^n + 300*10^n + 2040*9^n + 340*8^n - 1815*7^n + 510*6^n - 1350*5^n + 1350*4^n + 274*3^n - 548*2^n + 120).
MATHEMATICA
Table[(1 / 6!) (63^n - 30*47^n + 120*39^n + 60*35^n + 60 *33^n - 12*32^n - 345*31^n-720*29^n + 810*27^n + 120*26^n + 480*25^n + 360*24^n - 480*23^n - 720*22^n -240*21^n - 540*20^n + 1380*19^n + 750*18^n + 60*17^n - 210*16^n - 1535*15^n - 1820*14^n + 2250*13^n + 1800*12^n - 2820*11^n + 300*10^n + 2040*9^n + 340*8^n - 1815*7^n + 510*6^n - 1350*5^n + 1350*4^n + 274*3^n -548*2^n + 120), {n, 4, 20}] (* Vincenzo Librandi, Jun 17 2013 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 25 2000
STATUS
approved