OFFSET
0,5
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..845
K. S. Brown, Dedekind's problem
Eric Weisstein's World of Mathematics, Antichain covers
FORMULA
a(n) = (1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6).
G.f.: -5*x^4*(517752*x^6 -251184*x^5 +4757*x^4 +12696*x^3 -1810*x^2 +24*x +5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)*(9*x -1)*(11*x -1)*(15*x -1)). - Colin Barker, Jul 11 2013
MATHEMATICA
Table[(1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6), {n, 0, 25}] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) for(n=0, 25, print1((15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 07 2017
(Magma) [(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24: n in [0..25]]; // G. C. Greubel, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 25 2000
EXTENSIONS
More terms from Colin Barker, Jul 11 2013
STATUS
approved