login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056047
Number of 4-antichain covers of a labeled n-set.
2
0, 0, 0, 0, 25, 1895, 70370, 1868650, 41062035, 802349205, 14514339340, 249104207000, 4120588431245, 66392465654515, 1049608974433110, 16365222591176550, 252584307401055655, 3869412829938587825, 58950765174112191680, 894469325684769169300, 13531152125348360663265
OFFSET
0,5
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
K. S. Brown, Dedekind's problem
Eric Weisstein's World of Mathematics, Antichain covers
FORMULA
a(n) = (1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6).
G.f.: -5*x^4*(517752*x^6 -251184*x^5 +4757*x^4 +12696*x^3 -1810*x^2 +24*x +5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)*(9*x -1)*(11*x -1)*(15*x -1)). - Colin Barker, Jul 11 2013
MATHEMATICA
Table[(1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6), {n, 0, 25}] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) for(n=0, 25, print1((15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 07 2017
(Magma) [(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24: n in [0..25]]; // G. C. Greubel, Oct 07 2017
CROSSREFS
Cf. A051112.
Sequence in context: A023113 A322247 A177837 * A281436 A197671 A051112
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 25 2000
EXTENSIONS
More terms from Colin Barker, Jul 11 2013
STATUS
approved