login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322247
a(n) = A322246(n)^2, the square of the central coefficient in (1 + 5*x + 9*x^2)^n.
4
1, 25, 1849, 156025, 14523721, 1426950625, 145317252025, 15178231605625, 1615509001626025, 174471431239950625, 19062335608125901729, 2102483602307417980225, 233721380163477368733481, 26154175972512598202392225, 2943361280244176889333396889, 332869229155486455718147125625, 37806108834415039621850996946025, 4310099976506176089944803738530625, 493021434686696395739629566004713025
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 / AGM(1 + 11*x, sqrt((1 - x)*(1 - 11^2*x)) ), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
G.f.: 1 / AGM((1-x)*(1-11*x), (1+x)*(1+11*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * binomial(n,k)*binomial(2*k,k).
a(n) ~ 11^(2*n + 1) / (12*Pi*n). - Vaclav Kotesovec, Dec 13 2018
EXAMPLE
G.f.: A(x) = 1 + 25*x + 1849*x^2 + 156025*x^3 + 14523721*x^4 + 1426950625*x^5 + 145317252025*x^6 + 15178231605625*x^7 + 1615509001626025*x^8 + ...
that is,
A(x) = 1 + 5^2*x + 43^2*x^2 + 395^2*x^3 + 3811^2*x^4 + 37775^2*x^5 + 381205^2*x^6 + 3895925^2*x^7 + 40193395^2*x^8 + 417697775^2*x^9 + ... + A322246(n)^2*x^n + ...
MATHEMATICA
a[n_] := Sum[(-1)^(n-k) * 3^k * Binomial[n, k] * Binomial[2k, k], {k, 0, n}]^2; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
PROG
(PARI) /* a(n) = A322246(n)^2 - g.f. */
{a(n)=polcoeff(1/sqrt( (1 - x)*(1 + 11*x) +x*O(x^n)), n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322246(n)^2 - g.f. */
{a(n) = polcoeff( (1 + 5*x + 9*x^2 +x*O(x^n))^n, n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322246(n)^2 - binomial sum */
{a(n) = sum(k=0, n, (-1)^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322246(n)^2 - binomial sum */
{a(n) = sum(k=0, n, 11^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1 + 1*11*x, sqrt((1 - 1^2*x)*(1 - 11^2*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2018
STATUS
approved