login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322249
a(n) = A322248(n)^2, the square of the central coefficient in (1 + 5*x + 16*x^2)^n.
4
1, 25, 3249, 366025, 48455521, 6646325625, 947789867025, 138422872355625, 20598606105401025, 3109408600719825625, 474780862425986767729, 73175222677868396505225, 11366022325041154078402081, 1777059915791491092441607225, 279404859303904515406536763089, 44144451113336819125597110875625, 7004264626817806908496520658161025, 1115512654966236899680358546064905625
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 / AGM(1 + 3*13*x, sqrt((1 - 3^2*x)*(1 - 13^2*x)) ), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
G.f.: 1 / AGM((1-3*x)*(1-13*x), (1+3*x)*(1+13*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} (-3)^(n-k) * 4^k * binomial(n,k)*binomial(2*k,k).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} 13^(n-k) * (-4)^k * binomial(n,k)*binomial(2*k,k).
a(n) ~ 13^(2*n + 1) / (16*Pi*n). - Vaclav Kotesovec, Dec 10 2018
EXAMPLE
G.f.: A(x) = 1 + 25*x + 3249*x^2 + 366025*x^3 + 48455521*x^4 + 6646325625*x^5 + 947789867025*x^6 + 138422872355625*x^7 + 20598606105401025*x^8 + ...
such that
A(x) = 1 + 5^2*x + 57^2*x^2 + 605^2*x^3 + 6961^2*x^4 + 81525^2*x^5 + 973545^2*x^6 + 11765325^2*x^7 + 143522145^2*x^8 + ... + A322248(n)^2*x^n + ...
PROG
(PARI) /* a(n) = A322248(n)^2 - g.f. */
{a(n)=polcoeff(1/sqrt((1 + 3*x)*(1 - 13*x) +x*O(x^n)), n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322248(n)^2 - g.f. */
{a(n) = polcoeff( (1 + 5*x + 16*x^2 +x*O(x^n))^n, n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322248(n)^2 - binomial sum */
{a(n) = sum(k=0, n, (-3)^(n-k)*4^k*binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using binomial formula: */
{a(n) = sum(k=0, n, 13^(n-k)*(-4)^k*binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1 + 3*13*x, sqrt((1 - 3^2*x)*(1 - 13^2*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2018
STATUS
approved