OFFSET
0,2
COMMENTS
In general, the g.f. of the squares of coefficients in g.f. 1/sqrt((1-p*x)*(1-q*x)) is given by
1/AGM(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x))) = Sum_{n>=0} x^n*[Sum_{k=0..n} p^(n-k)*((q-p)/4)^k*C(n,k)*C(2*k,k)]^2,
and consists of integer coefficients when 4|(q-p).
Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..717
FORMULA
a(n) = A026375(n)^2 = [Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)]^2.
G.f.: 1 / AGM((1-x)*(1+5*x), (1+x)*(1-5*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) ~ 5^(2*n+1) / (4*Pi*n). - Vaclav Kotesovec, Dec 10 2018
EXAMPLE
G.f.: A(x) = 1 + 9*x + 121*x^2 + 2025*x^3 + 38025*x^4 + 762129*x^5 +...
where the square-root of the terms yields A026375:
[1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, ...]
the g.f. of which is 1/sqrt((1-x)*(1-5*x)).
MATHEMATICA
CoefficientList[Series[1/ArithmeticGeometricMean[1-5x, Sqrt[(1-x)(1-25x)]], {x, 0, 20}], x] (* Harvey P. Dale, Nov 01 2023 *)
PROG
(PARI) {a(n)=polcoeff( 1 / agm(1-5*x, sqrt((1-x)*(1-25*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2014
STATUS
approved