OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
FORMULA
a(n) = ( Sum_{k=0..[n/2]} 3^(n-2*k) * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(3*sqrt(2*n)-9/4-n)*2^(n-1). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (2*n+7)*a(n-1) + 2*(n-1)*(2*n+7)*a(n-2) - 8*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013
EXAMPLE
E.g.f.: A(x) = 1 + 9*x + 121*x^2/2! + 2025*x^3/3! + 40401*x^4/4! +...
where A(x) = 1 + 3^2*x + 11^2*x^2/2! + 45^2*x^3/3! + 201^2*x^4/4! + 963^2*x^5/5! +...+ A083886(n)^2*x^n/n! +...
MATHEMATICA
CoefficientList[Series[Exp[9*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(9*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)), n)}
(PARI) {a(n)=n!^2*polcoeff(exp(3*x+x^2+x*O(x^n)), n)^2}
(PARI) {a(n)=sum(k=0, n\2, 3^(n-2*k)*n!/((n-2*k)!*k!))^2}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
(SageMath)
def A202835_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
A202835_list(40) # G. C. Greubel, Jun 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2011
STATUS
approved