login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202835
Expansion of e.g.f.: exp(9*x/(1-2*x)) / sqrt(1-4*x^2).
8
1, 9, 121, 2025, 40401, 927369, 24000201, 689220009, 21710549025, 743187098889, 27441452694681, 1086166287819369, 45846179189949681, 2054407698719865225, 97357866191666622441, 4862830945258077841449, 255239441235423753980481, 14040944744510973314880009
OFFSET
0,2
LINKS
FORMULA
a(n) = A083886(n)^2, where the e.g.f. of A083886 is exp(3*x + x^2).
a(n) = ( Sum_{k=0..[n/2]} 3^(n-2*k) * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(3*sqrt(2*n)-9/4-n)*2^(n-1). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (2*n+7)*a(n-1) + 2*(n-1)*(2*n+7)*a(n-2) - 8*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013
EXAMPLE
E.g.f.: A(x) = 1 + 9*x + 121*x^2/2! + 2025*x^3/3! + 40401*x^4/4! +...
where A(x) = 1 + 3^2*x + 11^2*x^2/2! + 45^2*x^3/3! + 201^2*x^4/4! + 963^2*x^5/5! +...+ A083886(n)^2*x^n/n! +...
MATHEMATICA
CoefficientList[Series[Exp[9*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(9*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)), n)}
(PARI) {a(n)=n!^2*polcoeff(exp(3*x+x^2+x*O(x^n)), n)^2}
(PARI) {a(n)=sum(k=0, n\2, 3^(n-2*k)*n!/((n-2*k)!*k!))^2}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
(SageMath)
def A202835_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
A202835_list(40) # G. C. Greubel, Jun 21 2022
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2011
STATUS
approved