login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202832
E.g.f: exp(2*x + 5*x^2/2).
3
1, 2, 9, 38, 211, 1182, 7639, 50738, 368841, 2767202, 22132249, 182624598, 1582522891, 14122521662, 131109031239, 1250794578818, 12334766500561, 124733099306562, 1297921351160809, 13821821639912198, 150946171640101251, 1684074507271422302, 19217497036753475959
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..[n/2]} 2^(n-3*k)*5^k * n!/((n-2*k)!*k!).
O.g.f.: 1/(1-2*x - 5*x^2/(1-2*x - 10*x^2/(1-2*x - 15*x^2/(1-2*x - 20*x^2/(1-2*x -...))))), a continued fraction.
Recurrence: a(n) = 2*a(n-1) + 5*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ exp(2/5*sqrt(5*n)-n/2-1/5)*5^(n/2)*n^(n/2)/sqrt(2)*(1+17/150*sqrt(5)/sqrt(n)). - Vaclav Kotesovec, Oct 20 2012
EXAMPLE
E.g.f.: 1 + 2*x + 9*x^2/2! + 38*x^3/3! + 211*x^4/4! + 1182*x^5/5! +...
MATHEMATICA
CoefficientList[Series[E^(2*x+5*x^2/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(2*x+5*x^2/2+x*O(x^n)), n)}
(PARI) {a(n)=sum(k=0, n\2, 2^(n-3*k)*5^k*n!/((n-2*k)!*k!))}
(PARI) /* O.g.f. as a continued fraction: */
{a(n)=local(CF=1+2*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-2*x-5*(n-k)*x^2*CF)); polcoeff(CF, n)}
CROSSREFS
Column k=5 of A376826.
Cf. A202831.
Sequence in context: A249925 A370397 A162972 * A069724 A132961 A278050
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2011
STATUS
approved