login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202834
E.g.f.: exp(3*x + x^2/2).
4
1, 3, 10, 36, 138, 558, 2364, 10440, 47868, 227124, 1112184, 5607792, 29057400, 154465704, 841143312, 4685949792, 26674999056, 155000193840, 918475565472, 5545430185536, 34087326300576, 213170582612448, 1355345600149440, 8755789617922176, 57440317657203648
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..[n/2]} 3^(n-2*k)/2^k * n!/((n-2*k)!*k!).
O.g.f.: 1/(1-3*x - x^2/(1-3*x - 2*x^2/(1-3*x - 3*x^2/(1-3*x - 4*x^2/(1-3*x -...))))), a continued fraction.
a(n) ~ n^(n/2)*exp(-n/2+3*sqrt(n)-9/4)/sqrt(2) * (1+15/(8*sqrt(n))). - Vaclav Kotesovec, May 23 2013
Recurrence: a(n) = 3*a(n-1) + (n-1)*a(n-2). - Vaclav Kotesovec, May 23 2013
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 10*x^2/2! + 36*x^3/3! + 138*x^4/4! + 558*x^5/5! +...
MATHEMATICA
CoefficientList[Series[Exp[3*x + x^2/2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(3*x+x^2/2+x*O(x^n)), n)}
(PARI) {a(n)=sum(k=0, n\2, 3^(n-2*k)/2^k * n!/((n-2*k)!*k!))}
(PARI) /* O.g.f. as a continued fraction: */
{a(n)=local(CF=1+3*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-3*x-(n-k)*x^2*CF)); polcoeff(CF, n)}
CROSSREFS
Cf. A202833.
Sequence in context: A340941 A149041 A307346 * A129247 A162162 A149042
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2011
STATUS
approved