login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(3*x + x^2/2).
4

%I #17 Dec 24 2020 02:33:13

%S 1,3,10,36,138,558,2364,10440,47868,227124,1112184,5607792,29057400,

%T 154465704,841143312,4685949792,26674999056,155000193840,918475565472,

%U 5545430185536,34087326300576,213170582612448,1355345600149440,8755789617922176,57440317657203648

%N E.g.f.: exp(3*x + x^2/2).

%H Vincenzo Librandi, <a href="/A202834/b202834.txt">Table of n, a(n) for n = 0..200</a>

%H Yasushi Ieno, <a href="https://arxiv.org/abs/2012.12655">A newly-generalized problem from a problem for the Mathematical Olympiad and the methods to solve it</a>, arXiv:2012.12655 [math.GM], 2020. See p. 9.

%F a(n) = Sum_{k=0..[n/2]} 3^(n-2*k)/2^k * n!/((n-2*k)!*k!).

%F O.g.f.: 1/(1-3*x - x^2/(1-3*x - 2*x^2/(1-3*x - 3*x^2/(1-3*x - 4*x^2/(1-3*x -...))))), a continued fraction.

%F a(n) ~ n^(n/2)*exp(-n/2+3*sqrt(n)-9/4)/sqrt(2) * (1+15/(8*sqrt(n))). - _Vaclav Kotesovec_, May 23 2013

%F Recurrence: a(n) = 3*a(n-1) + (n-1)*a(n-2). - _Vaclav Kotesovec_, May 23 2013

%e E.g.f.: A(x) = 1 + 3*x + 10*x^2/2! + 36*x^3/3! + 138*x^4/4! + 558*x^5/5! +...

%t CoefficientList[Series[Exp[3*x + x^2/2], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, May 23 2013 *)

%o (PARI) {a(n)=n!*polcoeff(exp(3*x+x^2/2+x*O(x^n)),n)}

%o (PARI) {a(n)=sum(k=0,n\2,3^(n-2*k)/2^k * n!/((n-2*k)!*k!))}

%o (PARI) /* O.g.f. as a continued fraction: */

%o {a(n)=local(CF=1+3*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-3*x-(n-k)*x^2*CF)); polcoeff(CF, n)}

%Y Cf. A202833.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 25 2011