login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A046184
Indices of octagonal numbers which are also squares.
10
1, 9, 121, 1681, 23409, 326041, 4541161, 63250209, 880961761, 12270214441, 170902040409, 2380358351281, 33154114877521, 461777249934009, 6431727384198601, 89582406128846401, 1247721958419651009, 17378525011746267721, 242051628206028097081
OFFSET
1,2
COMMENTS
The equation a(t)*(3*a(t)-2) = m*m is equivalent to the Pell equation (3*a(t)-1)*(3*a(t)-1) - 3*m*m = 1. - Paul Weisenhorn, May 12 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 16 2011
Also numbers n such that the octagonal number N(n) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also nonnegative integers y in the solutions to 2*x^2 - 6*y^2 + 4*x + 4*y + 2 + 2 = 0, the corresponding values of x being A251963. - Colin Barker, Dec 11 2014
LINKS
Eric Weisstein's World of Mathematics, Octagonal Square Number.
FORMULA
{n: A000567(n) in A000290}.
Nearest integer to (1/6) * (2+sqrt(3))^(2n-1). - Ralf Stephan, Feb 24 2004
a(n) = A045899(n-1) + 1 = A051047(n+1) + 1 = A003697(2n-2). - N. J. A. Sloane, Jun 12 2004
a(n) = A001835(n)^2. - Lekraj Beedassy, Jul 21 2006
From Paul Weisenhorn, May 12 2009: (Start)
With A=(2+sqrt(3))^2=7+4*sqrt(3) the equation x*x-3*m*m=1 has solutions
x(t) + sqrt(3)*m(t) = (2+sqrt(3))*A^t and the recurrences
x(t+2) = 14*x(t+1) - x(t) with <x(t)> = 2, 26, 362, 5042
m(t+2) = 14*m(t+1) - m(t) with <m(t)> = 1, 15, 209, 2911
a(t+2) = 14*a(t+1) - a(t) - 4 with <a(t)> = 1, 9, 121, as above. (End)
From Ant King, Nov 15 2011: (Start)
a(n) = 14*a(n-1) - a(n-2) - 4.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (1/6)*( (2+sqrt(3))^(2n-1) + (2-sqrt(3))^(2n-1) + 2 ).
a(n) = ceiling( (1/6)*(2 + sqrt(3))^(2n-1) ).
a(n) = (1/6)*( (tan(5*Pi/12))^(2n-1) + (tan(Pi/12))^(2n-1) + 2 ).
a(n) = ceiling ( (1/6)*(tan(5*Pi/12))^(2n-1) ).
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = A006253(2n-2). - Andrey Goder, Oct 17 2021
MATHEMATICA
LinearRecurrence[ {15, -15, 1}, {1, 9, 121}, 17 ] (* Ant King, Nov 16 2011 *)
CoefficientList[Series[x (1-6x+x^2)/((1-x)(1-14x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Sep 01 2021 *)
PROG
(Magma) I:=[1, 9, 121]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 17 2011
(PARI) Vec(x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)) + O(x^100)) \\ Colin Barker, Dec 11 2014
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved