login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251963
Numbers n such that the sum of the triangular numbers T(n) and T(n+1) is equal to an octagonal number N(m) for some m.
2
0, 14, 208, 2910, 40544, 564718, 7865520, 109552574, 1525870528, 21252634830, 296011017104, 4122901604638, 57424611447840, 799821658665134, 11140078609864048, 155161278879431550, 2161117825702177664, 30100488280951055758, 419245718107612602960
OFFSET
1,2
COMMENTS
Also nonnegative integers x in the solutions to 2*x^2-6*y^2+4*x+4*y+2+2 = 0, the corresponding values of y being A046184.
FORMULA
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3).
G.f.: 2*x^2*(x-7) / ((x-1)*(x^2-14*x+1)).
a(n) = (-6-(7-4*sqrt(3))^n*(3+2*sqrt(3))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/6. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 12. - Vincenzo Librandi, Mar 05 2016
EXAMPLE
14 is in the sequence because T(14)+T(15) = 105+120 = 225 = N(9).
MATHEMATICA
RecurrenceTable[{a[1] == 0, a[2] == 14, a[n] == 14 a[n-1]- a[n-2] + 12}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
PROG
(PARI) concat(0, Vec(2*x^2*(x-7) / ((x-1)*(x^2-14*x+1)) + O(x^100)))
(Magma) I:=[0, 14]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+12: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 11 2014
STATUS
approved