OFFSET
0,4
FORMULA
a(n)=2*(sum(k=0..n, ((-1)^(k)*sum(j=1..2*k+1,((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(2*k+1,j)*(-1)^(n+1-j))/2^j))/(2*k+1)!)), n>0, a(0)=0.
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Sin[Cos[x]-1], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 10 2023 *)
PROG
(Maxima)
a(n):=if n=0 then 0 else 2*(sum(((-1)^(k)*sum(((sum((j-2*i)^(2*n)*binomial(j, i), i, 0, (j-1)/2))*binomial(2*k+1, j)*(-1)^(n+1-j))/2^j, j, 1, 2*k+1))/(2*k+1)!, k, 0, n));
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 21 2011
STATUS
approved