login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192007
E.g.f. sin(cos(x)-1) (even part)
1
0, -1, 1, 14, -209, 1259, 30856, -1561561, 37411921, -16085146, -60657859289, 4261856902379, -162682375304624, -1611913152464161, 993012713177088241, -109110124618216328866, 6878613768612426116431, 18035860168898476567739, -82542057452137913017262504
OFFSET
0,4
FORMULA
a(n)=2*(sum(k=0..n, ((-1)^(k)*sum(j=1..2*k+1,((sum(i=0..(j-1)/2, (j-2*i)^(2*n)*binomial(j,i)))*binomial(2*k+1,j)*(-1)^(n+1-j))/2^j))/(2*k+1)!)), n>0, a(0)=0.
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Sin[Cos[x]-1], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 10 2023 *)
PROG
(Maxima)
a(n):=if n=0 then 0 else 2*(sum(((-1)^(k)*sum(((sum((j-2*i)^(2*n)*binomial(j, i), i, 0, (j-1)/2))*binomial(2*k+1, j)*(-1)^(n+1-j))/2^j, j, 1, 2*k+1))/(2*k+1)!, k, 0, n));
CROSSREFS
Sequence in context: A002961 A063071 A251963 * A160682 A097261 A158555
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 21 2011
STATUS
approved