login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063071
Numbers k such that sigma(k)*omega(k) = sigma(k+1)*omega(k+1), where omega(k) is the number of distinct prime divisors of n (A001221).
1
14, 206, 1334, 1634, 2685, 14841, 18873, 19358, 26872, 33998, 36566, 42818, 56564, 84134, 116937, 122073, 161001, 162602, 166934, 174717, 190773, 193893, 239499, 245768, 260096, 289454, 326884, 383594, 409695, 422073, 430137, 438993, 440013
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..1000 (first 100 terms from Harry J. Smith)
MATHEMATICA
Select[Range[5000], PrimeNu[#]*DivisorSigma[1, #] == PrimeNu[# + 1]*DivisorSigma[1, # + 1] &] (* G. C. Greubel, Apr 23 2017 *)
PROG
(PARI) for(n=1, 10^6, if(sigma(n)*omega(n)==sigma(n+1)*omega(n+1), print(n)))
(PARI) { n=0; s=1; for (m=1, 10^9, if(s!=(r=sigma(m)*omega(m)), s=r, write("b063071.txt", n++, " ", m - 1); if (n==100, break)) ) } \\ Harry J. Smith, Aug 16 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 04 2001
STATUS
approved