login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192009
Modified cyclic phone booth sequence: number of ways to occupy n labeled phone booths in a circle one by one, each time picking a phone booth adjacent to the smallest number of previously occupied phone booths.
3
1, 2, 6, 8, 40, 168, 504, 3456, 15552, 97920, 620928, 4465152, 31449600, 273369600, 2172096000, 20968243200, 192753561600, 2032260710400, 20942298316800, 243270107136000, 2758764950323200, 34958441123020800, 434690126954496000, 5946571752210432000, 80503989505228800000
OFFSET
1,2
LINKS
FORMULA
For n > 1, a(n) = n * Sum (m+k-1)!*binomial(m+k,m)*2^k*k!*(m+k)!, where the sum is taken over nonnegative m,k such that 2*m+3*k = n. - Max Alekseyev, Sep 11 2016
a(n) = n * A276657(n). - Max Alekseyev, Sep 11 2016
EXAMPLE
For n=4, the A192009(n) = 6 ways of picking the phone booths are (1, 3, 2, 4), (1, 3, 4, 2), (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 2, 4), (3, 1, 4, 2), (4, 2, 1, 3), (4, 2, 3, 1).
MAPLE
A192009 := proc(n)
local a, k, m;
if n = 1 then
return 1;
end if;
a := 0 ;
for k from 0 to n/3 do
m := (n-3*k)/2 ;
if type (m, 'integer') then
a := a+(m+k-1)!*binomial(m+k, m)*2^k*k!*(m+k)! ;
end if;
end do:
a*n ;
end proc:
seq(A192009(n), n=1..20) ; # R. J. Mathar, Sep 17 2016
MATHEMATICA
r[n_] := {ToRules[Reduce[m >= 0 && k >= 0 && 2m+3k == n, {m, k}, Integers] ]}; f[{m_, k_}] := (m+k-1)!*Binomial[m + k, m]*2^k*k!*(m+k)!; a[n_] := n*Total[f /@ ({m, k} /. r[n])]; a[1] = 1; Array[a, 25] (* Jean-François Alcover, Sep 13 2016, after Max Alekseyev *)
PROG
(PARI) { A192009(n) = my(r, k); if(n==1, return(1)); r=0; forstep(m=lift(Mod(n, 3)/2), n\2, 3, k=(n-2*m)\3; r+=(m+k-1)!*binomial(m+k, m)*2^k*k!*(m+k)!); r*n; } \\ Max Alekseyev, Sep 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jens Voß, Jun 21 2011
EXTENSIONS
Terms a(15) onward from Max Alekseyev, Sep 11 2016
STATUS
approved