OFFSET
1,2
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..100
FORMULA
For n > 1, a(n) = n * Sum (m+k-1)!*binomial(m+k,m)*2^k*k!*(m+k)!, where the sum is taken over nonnegative m,k such that 2*m+3*k = n. - Max Alekseyev, Sep 11 2016
a(n) = n * A276657(n). - Max Alekseyev, Sep 11 2016
EXAMPLE
For n=4, the A192009(n) = 6 ways of picking the phone booths are (1, 3, 2, 4), (1, 3, 4, 2), (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 2, 4), (3, 1, 4, 2), (4, 2, 1, 3), (4, 2, 3, 1).
MAPLE
A192009 := proc(n)
local a, k, m;
if n = 1 then
return 1;
end if;
a := 0 ;
for k from 0 to n/3 do
m := (n-3*k)/2 ;
if type (m, 'integer') then
a := a+(m+k-1)!*binomial(m+k, m)*2^k*k!*(m+k)! ;
end if;
end do:
a*n ;
end proc:
seq(A192009(n), n=1..20) ; # R. J. Mathar, Sep 17 2016
MATHEMATICA
r[n_] := {ToRules[Reduce[m >= 0 && k >= 0 && 2m+3k == n, {m, k}, Integers] ]}; f[{m_, k_}] := (m+k-1)!*Binomial[m + k, m]*2^k*k!*(m+k)!; a[n_] := n*Total[f /@ ({m, k} /. r[n])]; a[1] = 1; Array[a, 25] (* Jean-François Alcover, Sep 13 2016, after Max Alekseyev *)
PROG
(PARI) { A192009(n) = my(r, k); if(n==1, return(1)); r=0; forstep(m=lift(Mod(n, 3)/2), n\2, 3, k=(n-2*m)\3; r+=(m+k-1)!*binomial(m+k, m)*2^k*k!*(m+k)!); r*n; } \\ Max Alekseyev, Sep 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jens Voß, Jun 21 2011
EXTENSIONS
Terms a(15) onward from Max Alekseyev, Sep 11 2016
STATUS
approved