login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335111
a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.
2
0, 1, -2, 6, -8, 40, 48, 784, 5248, 49536, 490240, 5403904, 64822272, 842742784, 11798284288, 176974510080, 2831591636992, 48137058942976, 866467058614272, 16462874118651904, 329257482362552320, 6914407129635618816, 152116956851937476608, 3498690007594658430976
OFFSET
0,3
COMMENTS
Inverse binomial transform of A000240.
FORMULA
G.f.: Sum_{k>=1} k! * x^k / (1 + 2*x)^(k + 1).
E.g.f.: x*exp(-2*x) / (1 - x).
a(n) = A000023(n) - A122803(n).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Jun 08 2022
a(n) = Sum_{k=0..n} (-1)^k * k * A008290(n,k). - Alois P. Heinz, May 20 2023
MATHEMATICA
Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ Michel Marcus, May 23 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 23 2020
STATUS
approved