OFFSET
1,2
COMMENTS
a(n) = A327267(2^n), since 2^n = (p_1)^n is the Heinz code for the multiset {1,1,...,1}.
See Pinner and Smyth link below for more details, including an algorithm for computing A327267(n). Also, see file link below for {(n, a(n), matrix(n)), n <= 13}, where matrix(n) has minimal modulus determinant equal to a(n) among n X n matrices with top row all 1's and all rows orthogonal.
LINKS
Chris Pinner and Chris Smyth, Lattices of minimal index in Z^n having an orthogonal basis containing a given basis vector
Christopher J. Smyth, List of n, a(n) and associated matrix for n up to 13
EXAMPLE
a(3) = 6 because the matrix [[1,1,1],[1,-1,0],[1,1,-2]] has top row of 3 1's and all rows orthogonal, and minimal positive determinant equal to 6.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Christopher J. Smyth, Sep 02 2019
STATUS
approved