Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 20 2023 07:29:08
%S 0,1,-2,6,-8,40,48,784,5248,49536,490240,5403904,64822272,842742784,
%T 11798284288,176974510080,2831591636992,48137058942976,
%U 866467058614272,16462874118651904,329257482362552320,6914407129635618816,152116956851937476608,3498690007594658430976
%N a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.
%C Inverse binomial transform of A000240.
%F G.f.: Sum_{k>=1} k! * x^k / (1 + 2*x)^(k + 1).
%F E.g.f.: x*exp(-2*x) / (1 - x).
%F a(n) = A000023(n) - A122803(n).
%F a(n) ~ exp(-2) * n!. - _Vaclav Kotesovec_, Jun 08 2022
%F a(n) = Sum_{k=0..n} (-1)^k * k * A008290(n,k). - _Alois P. Heinz_, May 20 2023
%t Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
%t nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
%t nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
%o (PARI) a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ _Michel Marcus_, May 23 2020
%Y Cf. A000023, A000240, A008290, A066534, A087981, A122803.
%K sign
%O 0,3
%A _Ilya Gutkovskiy_, May 23 2020