login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192010
The smallest number with n digits in its prime factorization (total count of digits of all bases and exponents).
2
1, 4, 12, 36, 132, 396, 1716, 5148, 25740, 87516, 437580, 1662804, 8314020, 38244492, 167943204, 839716020, 3862693692, 17298150012, 86490750060, 397857450276, 1850902051284, 9254510256420, 42570747179532, 201748323589956, 1008741617949780, 4640211442568988
OFFSET
1,2
COMMENTS
A050252(a(n)) = n and A050252(m) <> n for m < a(n);
EXAMPLE
a(2) = 4 = 2^2 and A050252(12) = (1+1) = 2;
a(3) = 12 = 2^2 * 3 and A050252(12) = (1+1) + 1 = 3;
a(4) = 36 = 2^2 * 3^2 and A050252(36) = (1+1) + (1+1) = 4;
a(5) = 132 = 2^2 * 3 * 11 and A050252(132) = (1+1) + 1 + 2 = 5;
a(6) = 396 = 2^2 * 3^2 * 11 and A050252(396) = (1+1) + (1+1) + 2 = 6;
a(7) = 1716 = 2^2 * 3 * 11 * 13 and A050252(1716) = (1+1) + 1 + 2 + 2 = 7;
a(8) = 5148 = 2^2 * 3^2 * 11 * 13 and A050252(5148) = (1+1) + (1+1) + 2 + 2 = 8;
a(9) = 25740 = 2^2 * 3^2 * 5 * 11 * 13 and A050252(25740) = (1+1) + (1+1) + 1 + 2 + 2 = 9;
a(10) = 87516 = 2^2 * 3^2 * 11 * 13 * 17 and A050252(87516) = (1+1) + (1+1) + 2 + 2 + 2 = 10;
a(11) = 437580 = 2^2 * 3^2 * 5 * 11 * 13 * 17 and A050252(437580) = (1+1) + (1+1) + 1 + 2 + 2 + 2 = 11;
a(12) = 1662804 = 2^2 * 3^2 * 11 * 13 * 17 * 19 and A050252(1662804) = (1+1) + (1+1) + 2 + 2 + 2 + 2 = 12;
a(13) = 8314020 = 2^2 * 3^2 * 5 * 11 * 13 * 17 * 19 and A050252(8314020) = (1+1) + (1+1) + 1 + 2 + 2 + 2 + 2 = 13.
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a192010 n = succ $ fromJust $ elemIndex n $ map a050252 [1..]
CROSSREFS
Sequence in context: A113990 A231179 A331717 * A252697 A056383 A293857
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jun 21 2011
EXTENSIONS
a(14)-a(26) from Donovan Johnson, Jul 03 2011
STATUS
approved