The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251966 Numbers representable as both b^c - b + c and x^y + x - y, where b, c, x, y are integers greater than 1. 1
 4, 14, 18, 27, 123, 256, 3125, 6556, 6566, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 95367431640610, 95367431640640, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A000312 except 1 is a subsequence. Terms that are not in A000312: 14, 18, 123, 6556, 6566, 95367431640610, 95367431640640. From Chai Wah Wu, May 18 2021: (Start) Sequence is infinite. If a, b > 1 and b^a+b == 0 mod a+1 then b^c-b+c is a term for c = ab(b^(a-1)+1)/(a+1), y = c/a, x = b^a. If b > 1 and b <> 1 mod 3, then b^(2b(b+1)/3)+b(2b-1)/3 is a term. If b > 2, then b^((b-1)(b^(b-2)+1))-b+(b-1)(b^(b-2)+1) is a term. For a(n) with n > 1, either c>=3 or y>=3. If c=y=2, we get b^2-b+2=x^2+x-2, i.e.(x+b)(x-b+1) = 4. Since x>1 and b>1 the only solution is x=b=2 which corresponds to the term a(1) = 4. This allows for a faster search algorithm by assuming c>=3 and y>=3. The cases c=2 and y>=3 can be dealt with by picking y>=3 and solving for b in the quadratic equation b^2-b+2=x^y+x-y. Similarly for c>=3 and y=2. (End) LINKS Chai Wah Wu, Table of n, a(n) for n = 1..30 EXAMPLE a(5) = 123 = 2^7 + 2 - 7 = 5^3 - 5 + 3. MATHEMATICA Clear[b0, c0, x0, y0]; m = 100; max = 2^m; tb = Flatten[Table[b0[bc = b^c - b + c ] = b; c0[bc] = c; bc, {b, 2, m}, {c, 2, m}]]; tx = Flatten[Table[x0[xy = x^y + x - y] = x; y0[xy] = y; xy, {x, 2, m}, {y, 2, m}]]; inter = Intersection[Select[tb, # <= max &], Select[tx, # <= max &]]; Table[Print[n = inter[[k]], " b = ", b0[n], " c = ", c0[n], " x = ", x0[n], " y = ", y0[n]]; n, {k, Length[inter]}] (* Jean-François Alcover, Mar 23 2015 *) PROG (Python) TOP = 10000000 a = *TOP for y in range(2, TOP//2):   if 2**y+2-y>=TOP: break   for x in range(2, TOP//2):     k = x**y+x-y     if k>=TOP: break     if k>=0: a[k]=1 for y in range(2, TOP//2):   if 2**y-2+y>=TOP: break   for x in range(2, TOP//2):     k = x**y-x+y     if k>=TOP: break     if k>=0: a[k]|=2 print([n for n in range(TOP) if a[n]==3]) CROSSREFS Cf. A000312, A255535. Sequence in context: A298126 A011859 A032825 * A022383 A336634 A045248 Adjacent sequences:  A251963 A251964 A251965 * A251967 A251968 A251969 KEYWORD nonn AUTHOR Alex Ratushnyak, Mar 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 01:39 EDT 2021. Contains 348065 sequences. (Running on oeis4.)