login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336634
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(-x) * BesselI(0,2*sqrt(x))^2.
1
1, 1, 0, -4, 14, -18, -168, 1920, -11898, 27398, 582896, -13028904, 183020620, -2061910004, 17930433744, -65293856160, -1965585556410, 69343044999750, -1519055329884960, 26755366818127560, -374375460816570780, 2924763867241325220
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.
D-finite with recurrence: n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3). - Robert Israel, Jul 30 2020
MAPLE
rec:= n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3):
f:= gfun:-rectoproc({rec, a(0)=1, a(1)=1, a(2)=0}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jul 30 2020
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[-x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
Table[(-1)^n n! HypergeometricPFQ[{1/2, -n}, {1, 1}, 4], {n, 0, 21}]
Table[Sum[(-1)^(n - k) Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 21}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k)^2 * binomial(2*k, k) * (n-k)!); \\ Michel Marcus, Jul 30 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 28 2020
STATUS
approved