login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336634 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(-x) * BesselI(0,2*sqrt(x))^2. 1
1, 1, 0, -4, 14, -18, -168, 1920, -11898, 27398, 582896, -13028904, 183020620, -2061910004, 17930433744, -65293856160, -1965585556410, 69343044999750, -1519055329884960, 26755366818127560, -374375460816570780, 2924763867241325220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Robert Israel, Table of n, a(n) for n = 0..450

FORMULA

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.

D-finite with recurrence: n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3). - Robert Israel, Jul 30 2020

MAPLE

rec:= n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3):

f:= gfun:-rectoproc({rec, a(0)=1, a(1)=1, a(2)=0}, a(n), remember):

map(f, [$0..30]); # Robert Israel, Jul 30 2020

MATHEMATICA

nmax = 21; CoefficientList[Series[Exp[-x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2

Table[(-1)^n n! HypergeometricPFQ[{1/2, -n}, {1, 1}, 4], {n, 0, 21}]

Table[Sum[(-1)^(n - k) Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 21}]

PROG

(PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k)^2 * binomial(2*k, k) * (n-k)!); \\ Michel Marcus, Jul 30 2020

CROSSREFS

Cf. A000984, A009940, A244973, A336293.

Sequence in context: A032825 A251966 A022383 * A045248 A271375 A070902

Adjacent sequences:  A336631 A336632 A336633 * A336635 A336636 A336637

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Jul 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 14:28 EDT 2021. Contains 348267 sequences. (Running on oeis4.)